Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm
Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we...
Ausführliche Beschreibung
Autor*in: |
Scheike, Thomas H. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Lifetime data analysis - Springer US, 1995, 13(2007), 3 vom: 08. Aug., Seite 399-420 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2007 ; number:3 ; day:08 ; month:08 ; pages:399-420 |
Links: |
---|
DOI / URN: |
10.1007/s10985-007-9043-3 |
---|
Katalog-ID: |
OLC2067134787 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2067134787 | ||
003 | DE-627 | ||
005 | 20230503171427.0 | ||
007 | tu | ||
008 | 200820s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10985-007-9043-3 |2 doi | |
035 | |a (DE-627)OLC2067134787 | ||
035 | |a (DE-He213)s10985-007-9043-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 004 |q VZ |
100 | 1 | |a Scheike, Thomas H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2007 | ||
520 | |a Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that leads to a score equation that can be solved directly. This score has mean zero. We also show that all the considered methods have the same asymptotic properties and that there is no loss of asymptotic efficiency when the tie sizes are bounded or even converge to infinity at a given rate. A simulation study is conducted to compare the finite sample properties of the methods. | ||
650 | 4 | |a Cox regression model | |
650 | 4 | |a Tied survival data | |
650 | 4 | |a EM-algorithm | |
650 | 4 | |a Asymptotics | |
700 | 1 | |a Sun, Yanqing |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Lifetime data analysis |d Springer US, 1995 |g 13(2007), 3 vom: 08. Aug., Seite 399-420 |w (DE-627)233193332 |w (DE-600)1393066-7 |w (DE-576)07005777X |x 1380-7870 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2007 |g number:3 |g day:08 |g month:08 |g pages:399-420 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10985-007-9043-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4305 | ||
951 | |a AR | ||
952 | |d 13 |j 2007 |e 3 |b 08 |c 08 |h 399-420 |
author_variant |
t h s th ths y s ys |
---|---|
matchkey_str |
article:13807870:2007----::aiulklhoetmtofriduvvlaanecxers |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s10985-007-9043-3 doi (DE-627)OLC2067134787 (DE-He213)s10985-007-9043-3-p DE-627 ger DE-627 rakwb eng 510 004 VZ Scheike, Thomas H. verfasserin aut Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that leads to a score equation that can be solved directly. This score has mean zero. We also show that all the considered methods have the same asymptotic properties and that there is no loss of asymptotic efficiency when the tie sizes are bounded or even converge to infinity at a given rate. A simulation study is conducted to compare the finite sample properties of the methods. Cox regression model Tied survival data EM-algorithm Asymptotics Sun, Yanqing aut Enthalten in Lifetime data analysis Springer US, 1995 13(2007), 3 vom: 08. Aug., Seite 399-420 (DE-627)233193332 (DE-600)1393066-7 (DE-576)07005777X 1380-7870 nnns volume:13 year:2007 number:3 day:08 month:08 pages:399-420 https://doi.org/10.1007/s10985-007-9043-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4305 AR 13 2007 3 08 08 399-420 |
spelling |
10.1007/s10985-007-9043-3 doi (DE-627)OLC2067134787 (DE-He213)s10985-007-9043-3-p DE-627 ger DE-627 rakwb eng 510 004 VZ Scheike, Thomas H. verfasserin aut Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that leads to a score equation that can be solved directly. This score has mean zero. We also show that all the considered methods have the same asymptotic properties and that there is no loss of asymptotic efficiency when the tie sizes are bounded or even converge to infinity at a given rate. A simulation study is conducted to compare the finite sample properties of the methods. Cox regression model Tied survival data EM-algorithm Asymptotics Sun, Yanqing aut Enthalten in Lifetime data analysis Springer US, 1995 13(2007), 3 vom: 08. Aug., Seite 399-420 (DE-627)233193332 (DE-600)1393066-7 (DE-576)07005777X 1380-7870 nnns volume:13 year:2007 number:3 day:08 month:08 pages:399-420 https://doi.org/10.1007/s10985-007-9043-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4305 AR 13 2007 3 08 08 399-420 |
allfields_unstemmed |
10.1007/s10985-007-9043-3 doi (DE-627)OLC2067134787 (DE-He213)s10985-007-9043-3-p DE-627 ger DE-627 rakwb eng 510 004 VZ Scheike, Thomas H. verfasserin aut Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that leads to a score equation that can be solved directly. This score has mean zero. We also show that all the considered methods have the same asymptotic properties and that there is no loss of asymptotic efficiency when the tie sizes are bounded or even converge to infinity at a given rate. A simulation study is conducted to compare the finite sample properties of the methods. Cox regression model Tied survival data EM-algorithm Asymptotics Sun, Yanqing aut Enthalten in Lifetime data analysis Springer US, 1995 13(2007), 3 vom: 08. Aug., Seite 399-420 (DE-627)233193332 (DE-600)1393066-7 (DE-576)07005777X 1380-7870 nnns volume:13 year:2007 number:3 day:08 month:08 pages:399-420 https://doi.org/10.1007/s10985-007-9043-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4305 AR 13 2007 3 08 08 399-420 |
allfieldsGer |
10.1007/s10985-007-9043-3 doi (DE-627)OLC2067134787 (DE-He213)s10985-007-9043-3-p DE-627 ger DE-627 rakwb eng 510 004 VZ Scheike, Thomas H. verfasserin aut Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that leads to a score equation that can be solved directly. This score has mean zero. We also show that all the considered methods have the same asymptotic properties and that there is no loss of asymptotic efficiency when the tie sizes are bounded or even converge to infinity at a given rate. A simulation study is conducted to compare the finite sample properties of the methods. Cox regression model Tied survival data EM-algorithm Asymptotics Sun, Yanqing aut Enthalten in Lifetime data analysis Springer US, 1995 13(2007), 3 vom: 08. Aug., Seite 399-420 (DE-627)233193332 (DE-600)1393066-7 (DE-576)07005777X 1380-7870 nnns volume:13 year:2007 number:3 day:08 month:08 pages:399-420 https://doi.org/10.1007/s10985-007-9043-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4305 AR 13 2007 3 08 08 399-420 |
allfieldsSound |
10.1007/s10985-007-9043-3 doi (DE-627)OLC2067134787 (DE-He213)s10985-007-9043-3-p DE-627 ger DE-627 rakwb eng 510 004 VZ Scheike, Thomas H. verfasserin aut Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that leads to a score equation that can be solved directly. This score has mean zero. We also show that all the considered methods have the same asymptotic properties and that there is no loss of asymptotic efficiency when the tie sizes are bounded or even converge to infinity at a given rate. A simulation study is conducted to compare the finite sample properties of the methods. Cox regression model Tied survival data EM-algorithm Asymptotics Sun, Yanqing aut Enthalten in Lifetime data analysis Springer US, 1995 13(2007), 3 vom: 08. Aug., Seite 399-420 (DE-627)233193332 (DE-600)1393066-7 (DE-576)07005777X 1380-7870 nnns volume:13 year:2007 number:3 day:08 month:08 pages:399-420 https://doi.org/10.1007/s10985-007-9043-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4305 AR 13 2007 3 08 08 399-420 |
language |
English |
source |
Enthalten in Lifetime data analysis 13(2007), 3 vom: 08. Aug., Seite 399-420 volume:13 year:2007 number:3 day:08 month:08 pages:399-420 |
sourceStr |
Enthalten in Lifetime data analysis 13(2007), 3 vom: 08. Aug., Seite 399-420 volume:13 year:2007 number:3 day:08 month:08 pages:399-420 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cox regression model Tied survival data EM-algorithm Asymptotics |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Lifetime data analysis |
authorswithroles_txt_mv |
Scheike, Thomas H. @@aut@@ Sun, Yanqing @@aut@@ |
publishDateDaySort_date |
2007-08-08T00:00:00Z |
hierarchy_top_id |
233193332 |
dewey-sort |
3510 |
id |
OLC2067134787 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2067134787</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503171427.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10985-007-9043-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2067134787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10985-007-9043-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scheike, Thomas H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that leads to a score equation that can be solved directly. This score has mean zero. We also show that all the considered methods have the same asymptotic properties and that there is no loss of asymptotic efficiency when the tie sizes are bounded or even converge to infinity at a given rate. A simulation study is conducted to compare the finite sample properties of the methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cox regression model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tied survival data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EM-algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Yanqing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Lifetime data analysis</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">13(2007), 3 vom: 08. Aug., Seite 399-420</subfield><subfield code="w">(DE-627)233193332</subfield><subfield code="w">(DE-600)1393066-7</subfield><subfield code="w">(DE-576)07005777X</subfield><subfield code="x">1380-7870</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">day:08</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:399-420</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10985-007-9043-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="b">08</subfield><subfield code="c">08</subfield><subfield code="h">399-420</subfield></datafield></record></collection>
|
author |
Scheike, Thomas H. |
spellingShingle |
Scheike, Thomas H. ddc 510 misc Cox regression model misc Tied survival data misc EM-algorithm misc Asymptotics Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm |
authorStr |
Scheike, Thomas H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)233193332 |
format |
Article |
dewey-ones |
510 - Mathematics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1380-7870 |
topic_title |
510 004 VZ Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm Cox regression model Tied survival data EM-algorithm Asymptotics |
topic |
ddc 510 misc Cox regression model misc Tied survival data misc EM-algorithm misc Asymptotics |
topic_unstemmed |
ddc 510 misc Cox regression model misc Tied survival data misc EM-algorithm misc Asymptotics |
topic_browse |
ddc 510 misc Cox regression model misc Tied survival data misc EM-algorithm misc Asymptotics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Lifetime data analysis |
hierarchy_parent_id |
233193332 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Lifetime data analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)233193332 (DE-600)1393066-7 (DE-576)07005777X |
title |
Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm |
ctrlnum |
(DE-627)OLC2067134787 (DE-He213)s10985-007-9043-3-p |
title_full |
Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm |
author_sort |
Scheike, Thomas H. |
journal |
Lifetime data analysis |
journalStr |
Lifetime data analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
399 |
author_browse |
Scheike, Thomas H. Sun, Yanqing |
container_volume |
13 |
class |
510 004 VZ |
format_se |
Aufsätze |
author-letter |
Scheike, Thomas H. |
doi_str_mv |
10.1007/s10985-007-9043-3 |
dewey-full |
510 004 |
title_sort |
maximum likelihood estimation for tied survival data under cox regression model via em-algorithm |
title_auth |
Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm |
abstract |
Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that leads to a score equation that can be solved directly. This score has mean zero. We also show that all the considered methods have the same asymptotic properties and that there is no loss of asymptotic efficiency when the tie sizes are bounded or even converge to infinity at a given rate. A simulation study is conducted to compare the finite sample properties of the methods. © Springer Science+Business Media, LLC 2007 |
abstractGer |
Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that leads to a score equation that can be solved directly. This score has mean zero. We also show that all the considered methods have the same asymptotic properties and that there is no loss of asymptotic efficiency when the tie sizes are bounded or even converge to infinity at a given rate. A simulation study is conducted to compare the finite sample properties of the methods. © Springer Science+Business Media, LLC 2007 |
abstract_unstemmed |
Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that leads to a score equation that can be solved directly. This score has mean zero. We also show that all the considered methods have the same asymptotic properties and that there is no loss of asymptotic efficiency when the tie sizes are bounded or even converge to infinity at a given rate. A simulation study is conducted to compare the finite sample properties of the methods. © Springer Science+Business Media, LLC 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4305 |
container_issue |
3 |
title_short |
Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm |
url |
https://doi.org/10.1007/s10985-007-9043-3 |
remote_bool |
false |
author2 |
Sun, Yanqing |
author2Str |
Sun, Yanqing |
ppnlink |
233193332 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10985-007-9043-3 |
up_date |
2024-07-03T13:53:24.454Z |
_version_ |
1803566243595157504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2067134787</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503171427.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10985-007-9043-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2067134787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10985-007-9043-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scheike, Thomas H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that leads to a score equation that can be solved directly. This score has mean zero. We also show that all the considered methods have the same asymptotic properties and that there is no loss of asymptotic efficiency when the tie sizes are bounded or even converge to infinity at a given rate. A simulation study is conducted to compare the finite sample properties of the methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cox regression model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tied survival data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EM-algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Yanqing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Lifetime data analysis</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">13(2007), 3 vom: 08. Aug., Seite 399-420</subfield><subfield code="w">(DE-627)233193332</subfield><subfield code="w">(DE-600)1393066-7</subfield><subfield code="w">(DE-576)07005777X</subfield><subfield code="x">1380-7870</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">day:08</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:399-420</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10985-007-9043-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="b">08</subfield><subfield code="c">08</subfield><subfield code="h">399-420</subfield></datafield></record></collection>
|
score |
7.4006615 |