Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection
Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a...
Ausführliche Beschreibung
Autor*in: |
Tao, Jin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© MAIK “Nauka/Interperiodica” 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: The Russian journal of nondestructive testing - Nauka/Interperiodica, 1992, 41(2005), 4 vom: Apr., Seite 231-238 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2005 ; number:4 ; month:04 ; pages:231-238 |
Links: |
---|
DOI / URN: |
10.1007/s11181-005-0155-0 |
---|
Katalog-ID: |
OLC2067588338 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2067588338 | ||
003 | DE-627 | ||
005 | 20230504035315.0 | ||
007 | tu | ||
008 | 200820s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11181-005-0155-0 |2 doi | |
035 | |a (DE-627)OLC2067588338 | ||
035 | |a (DE-He213)s11181-005-0155-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Tao, Jin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © MAIK “Nauka/Interperiodica” 2005 | ||
520 | |a Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a recognizing algorithm based on a dynamic wavelet-basis-function (WBF) neural network. This dynamic network utilizes a multiscale and multiresolution orthogonal wavelet and backward-propagating through signals and has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, possessing high-speed convergence and good approaching features. The performance that applies the algorithm based on the network for predicting a defect profile from experimental MFL signals is also presented. | ||
650 | 4 | |a Neural Network | |
650 | 4 | |a Structural Material | |
650 | 4 | |a Dynamic Network | |
650 | 4 | |a Recognition Algorithm | |
650 | 4 | |a Orthogonal Wavelet | |
700 | 1 | |a Peiwen, Que |4 aut | |
700 | 1 | |a Liang, Chen |4 aut | |
700 | 1 | |a Liang, Li |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The Russian journal of nondestructive testing |d Nauka/Interperiodica, 1992 |g 41(2005), 4 vom: Apr., Seite 231-238 |w (DE-627)131135708 |w (DE-600)1124967-5 |w (DE-576)032746954 |x 1061-8309 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2005 |g number:4 |g month:04 |g pages:231-238 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11181-005-0155-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4116 | ||
951 | |a AR | ||
952 | |d 41 |j 2005 |e 4 |c 04 |h 231-238 |
author_variant |
j t jt q p qp c l cl l l ll |
---|---|
matchkey_str |
article:10618309:2005----::eerhnrcgiinloihfrfsoeieieeetdrn |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s11181-005-0155-0 doi (DE-627)OLC2067588338 (DE-He213)s11181-005-0155-0-p DE-627 ger DE-627 rakwb eng 670 VZ Tao, Jin verfasserin aut Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a recognizing algorithm based on a dynamic wavelet-basis-function (WBF) neural network. This dynamic network utilizes a multiscale and multiresolution orthogonal wavelet and backward-propagating through signals and has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, possessing high-speed convergence and good approaching features. The performance that applies the algorithm based on the network for predicting a defect profile from experimental MFL signals is also presented. Neural Network Structural Material Dynamic Network Recognition Algorithm Orthogonal Wavelet Peiwen, Que aut Liang, Chen aut Liang, Li aut Enthalten in The Russian journal of nondestructive testing Nauka/Interperiodica, 1992 41(2005), 4 vom: Apr., Seite 231-238 (DE-627)131135708 (DE-600)1124967-5 (DE-576)032746954 1061-8309 nnns volume:41 year:2005 number:4 month:04 pages:231-238 https://doi.org/10.1007/s11181-005-0155-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4116 AR 41 2005 4 04 231-238 |
spelling |
10.1007/s11181-005-0155-0 doi (DE-627)OLC2067588338 (DE-He213)s11181-005-0155-0-p DE-627 ger DE-627 rakwb eng 670 VZ Tao, Jin verfasserin aut Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a recognizing algorithm based on a dynamic wavelet-basis-function (WBF) neural network. This dynamic network utilizes a multiscale and multiresolution orthogonal wavelet and backward-propagating through signals and has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, possessing high-speed convergence and good approaching features. The performance that applies the algorithm based on the network for predicting a defect profile from experimental MFL signals is also presented. Neural Network Structural Material Dynamic Network Recognition Algorithm Orthogonal Wavelet Peiwen, Que aut Liang, Chen aut Liang, Li aut Enthalten in The Russian journal of nondestructive testing Nauka/Interperiodica, 1992 41(2005), 4 vom: Apr., Seite 231-238 (DE-627)131135708 (DE-600)1124967-5 (DE-576)032746954 1061-8309 nnns volume:41 year:2005 number:4 month:04 pages:231-238 https://doi.org/10.1007/s11181-005-0155-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4116 AR 41 2005 4 04 231-238 |
allfields_unstemmed |
10.1007/s11181-005-0155-0 doi (DE-627)OLC2067588338 (DE-He213)s11181-005-0155-0-p DE-627 ger DE-627 rakwb eng 670 VZ Tao, Jin verfasserin aut Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a recognizing algorithm based on a dynamic wavelet-basis-function (WBF) neural network. This dynamic network utilizes a multiscale and multiresolution orthogonal wavelet and backward-propagating through signals and has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, possessing high-speed convergence and good approaching features. The performance that applies the algorithm based on the network for predicting a defect profile from experimental MFL signals is also presented. Neural Network Structural Material Dynamic Network Recognition Algorithm Orthogonal Wavelet Peiwen, Que aut Liang, Chen aut Liang, Li aut Enthalten in The Russian journal of nondestructive testing Nauka/Interperiodica, 1992 41(2005), 4 vom: Apr., Seite 231-238 (DE-627)131135708 (DE-600)1124967-5 (DE-576)032746954 1061-8309 nnns volume:41 year:2005 number:4 month:04 pages:231-238 https://doi.org/10.1007/s11181-005-0155-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4116 AR 41 2005 4 04 231-238 |
allfieldsGer |
10.1007/s11181-005-0155-0 doi (DE-627)OLC2067588338 (DE-He213)s11181-005-0155-0-p DE-627 ger DE-627 rakwb eng 670 VZ Tao, Jin verfasserin aut Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a recognizing algorithm based on a dynamic wavelet-basis-function (WBF) neural network. This dynamic network utilizes a multiscale and multiresolution orthogonal wavelet and backward-propagating through signals and has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, possessing high-speed convergence and good approaching features. The performance that applies the algorithm based on the network for predicting a defect profile from experimental MFL signals is also presented. Neural Network Structural Material Dynamic Network Recognition Algorithm Orthogonal Wavelet Peiwen, Que aut Liang, Chen aut Liang, Li aut Enthalten in The Russian journal of nondestructive testing Nauka/Interperiodica, 1992 41(2005), 4 vom: Apr., Seite 231-238 (DE-627)131135708 (DE-600)1124967-5 (DE-576)032746954 1061-8309 nnns volume:41 year:2005 number:4 month:04 pages:231-238 https://doi.org/10.1007/s11181-005-0155-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4116 AR 41 2005 4 04 231-238 |
allfieldsSound |
10.1007/s11181-005-0155-0 doi (DE-627)OLC2067588338 (DE-He213)s11181-005-0155-0-p DE-627 ger DE-627 rakwb eng 670 VZ Tao, Jin verfasserin aut Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a recognizing algorithm based on a dynamic wavelet-basis-function (WBF) neural network. This dynamic network utilizes a multiscale and multiresolution orthogonal wavelet and backward-propagating through signals and has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, possessing high-speed convergence and good approaching features. The performance that applies the algorithm based on the network for predicting a defect profile from experimental MFL signals is also presented. Neural Network Structural Material Dynamic Network Recognition Algorithm Orthogonal Wavelet Peiwen, Que aut Liang, Chen aut Liang, Li aut Enthalten in The Russian journal of nondestructive testing Nauka/Interperiodica, 1992 41(2005), 4 vom: Apr., Seite 231-238 (DE-627)131135708 (DE-600)1124967-5 (DE-576)032746954 1061-8309 nnns volume:41 year:2005 number:4 month:04 pages:231-238 https://doi.org/10.1007/s11181-005-0155-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4116 AR 41 2005 4 04 231-238 |
language |
English |
source |
Enthalten in The Russian journal of nondestructive testing 41(2005), 4 vom: Apr., Seite 231-238 volume:41 year:2005 number:4 month:04 pages:231-238 |
sourceStr |
Enthalten in The Russian journal of nondestructive testing 41(2005), 4 vom: Apr., Seite 231-238 volume:41 year:2005 number:4 month:04 pages:231-238 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Neural Network Structural Material Dynamic Network Recognition Algorithm Orthogonal Wavelet |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The Russian journal of nondestructive testing |
authorswithroles_txt_mv |
Tao, Jin @@aut@@ Peiwen, Que @@aut@@ Liang, Chen @@aut@@ Liang, Li @@aut@@ |
publishDateDaySort_date |
2005-04-01T00:00:00Z |
hierarchy_top_id |
131135708 |
dewey-sort |
3670 |
id |
OLC2067588338 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2067588338</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504035315.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11181-005-0155-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2067588338</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11181-005-0155-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tao, Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK “Nauka/Interperiodica” 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a recognizing algorithm based on a dynamic wavelet-basis-function (WBF) neural network. This dynamic network utilizes a multiscale and multiresolution orthogonal wavelet and backward-propagating through signals and has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, possessing high-speed convergence and good approaching features. The performance that applies the algorithm based on the network for predicting a defect profile from experimental MFL signals is also presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural Material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recognition Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal Wavelet</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peiwen, Que</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Chen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Russian journal of nondestructive testing</subfield><subfield code="d">Nauka/Interperiodica, 1992</subfield><subfield code="g">41(2005), 4 vom: Apr., Seite 231-238</subfield><subfield code="w">(DE-627)131135708</subfield><subfield code="w">(DE-600)1124967-5</subfield><subfield code="w">(DE-576)032746954</subfield><subfield code="x">1061-8309</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:231-238</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11181-005-0155-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2005</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">231-238</subfield></datafield></record></collection>
|
author |
Tao, Jin |
spellingShingle |
Tao, Jin ddc 670 misc Neural Network misc Structural Material misc Dynamic Network misc Recognition Algorithm misc Orthogonal Wavelet Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection |
authorStr |
Tao, Jin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131135708 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1061-8309 |
topic_title |
670 VZ Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection Neural Network Structural Material Dynamic Network Recognition Algorithm Orthogonal Wavelet |
topic |
ddc 670 misc Neural Network misc Structural Material misc Dynamic Network misc Recognition Algorithm misc Orthogonal Wavelet |
topic_unstemmed |
ddc 670 misc Neural Network misc Structural Material misc Dynamic Network misc Recognition Algorithm misc Orthogonal Wavelet |
topic_browse |
ddc 670 misc Neural Network misc Structural Material misc Dynamic Network misc Recognition Algorithm misc Orthogonal Wavelet |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The Russian journal of nondestructive testing |
hierarchy_parent_id |
131135708 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The Russian journal of nondestructive testing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131135708 (DE-600)1124967-5 (DE-576)032746954 |
title |
Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection |
ctrlnum |
(DE-627)OLC2067588338 (DE-He213)s11181-005-0155-0-p |
title_full |
Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection |
author_sort |
Tao, Jin |
journal |
The Russian journal of nondestructive testing |
journalStr |
The Russian journal of nondestructive testing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
231 |
author_browse |
Tao, Jin Peiwen, Que Liang, Chen Liang, Li |
container_volume |
41 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Tao, Jin |
doi_str_mv |
10.1007/s11181-005-0155-0 |
dewey-full |
670 |
title_sort |
research on a recognition algorithm for offshore-pipeline defects during magnetic-flux inspection |
title_auth |
Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection |
abstract |
Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a recognizing algorithm based on a dynamic wavelet-basis-function (WBF) neural network. This dynamic network utilizes a multiscale and multiresolution orthogonal wavelet and backward-propagating through signals and has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, possessing high-speed convergence and good approaching features. The performance that applies the algorithm based on the network for predicting a defect profile from experimental MFL signals is also presented. © MAIK “Nauka/Interperiodica” 2005 |
abstractGer |
Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a recognizing algorithm based on a dynamic wavelet-basis-function (WBF) neural network. This dynamic network utilizes a multiscale and multiresolution orthogonal wavelet and backward-propagating through signals and has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, possessing high-speed convergence and good approaching features. The performance that applies the algorithm based on the network for predicting a defect profile from experimental MFL signals is also presented. © MAIK “Nauka/Interperiodica” 2005 |
abstract_unstemmed |
Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a recognizing algorithm based on a dynamic wavelet-basis-function (WBF) neural network. This dynamic network utilizes a multiscale and multiresolution orthogonal wavelet and backward-propagating through signals and has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, possessing high-speed convergence and good approaching features. The performance that applies the algorithm based on the network for predicting a defect profile from experimental MFL signals is also presented. © MAIK “Nauka/Interperiodica” 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4116 |
container_issue |
4 |
title_short |
Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection |
url |
https://doi.org/10.1007/s11181-005-0155-0 |
remote_bool |
false |
author2 |
Peiwen, Que Liang, Chen Liang, Li |
author2Str |
Peiwen, Que Liang, Chen Liang, Li |
ppnlink |
131135708 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11181-005-0155-0 |
up_date |
2024-07-03T15:39:28.264Z |
_version_ |
1803572916536737792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2067588338</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504035315.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11181-005-0155-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2067588338</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11181-005-0155-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tao, Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on a Recognition Algorithm for Offshore-Pipeline Defects during Magnetic-Flux Inspection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK “Nauka/Interperiodica” 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Pipeline-safety evaluation is an important problem for industry. On the basis of the magnetic-flux-leakage (MFL) method, this paper presents an automated inspection device for inspection of pipeline defects, analyzes the MFL-inspection theory and some defect-feature parameters, and gives a recognizing algorithm based on a dynamic wavelet-basis-function (WBF) neural network. This dynamic network utilizes a multiscale and multiresolution orthogonal wavelet and backward-propagating through signals and has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, possessing high-speed convergence and good approaching features. The performance that applies the algorithm based on the network for predicting a defect profile from experimental MFL signals is also presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural Material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recognition Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal Wavelet</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peiwen, Que</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Chen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Russian journal of nondestructive testing</subfield><subfield code="d">Nauka/Interperiodica, 1992</subfield><subfield code="g">41(2005), 4 vom: Apr., Seite 231-238</subfield><subfield code="w">(DE-627)131135708</subfield><subfield code="w">(DE-600)1124967-5</subfield><subfield code="w">(DE-576)032746954</subfield><subfield code="x">1061-8309</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:231-238</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11181-005-0155-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2005</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">231-238</subfield></datafield></record></collection>
|
score |
7.400962 |