Propagation of shear waves in muscle tissue
Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of...
Ausführliche Beschreibung
Autor*in: |
Afanas’eva, D. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Biophysics - SP MAIK Nauka/Interperiodica, 1957, 55(2010), 5 vom: Okt., Seite 791-795 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2010 ; number:5 ; month:10 ; pages:791-795 |
Links: |
---|
DOI / URN: |
10.1134/S0006350910050192 |
---|
Katalog-ID: |
OLC2067721356 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2067721356 | ||
003 | DE-627 | ||
005 | 20230504101802.0 | ||
007 | tu | ||
008 | 200820s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0006350910050192 |2 doi | |
035 | |a (DE-627)OLC2067721356 | ||
035 | |a (DE-He213)S0006350910050192-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 530 |q VZ |
084 | |a 12 |2 ssgn | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Afanas’eva, D. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Propagation of shear waves in muscle tissue |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2010 | ||
520 | |a Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of the second type (transverse) propagate without decay even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer was investigated numerically. The values of the problem parameters are found for which one can easily estimate the active tension (or muscle tone) from the characteristics of standing waves. This value is informative for diagnostics of the muscle state. | ||
650 | 4 | |a muscle | |
650 | 4 | |a shear waves | |
650 | 4 | |a acoustics | |
650 | 4 | |a muscle tone | |
700 | 1 | |a Tsaturyan, A. K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Biophysics |d SP MAIK Nauka/Interperiodica, 1957 |g 55(2010), 5 vom: Okt., Seite 791-795 |w (DE-627)12909191X |w (DE-600)6617-5 |w (DE-576)014427281 |x 0006-3509 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2010 |g number:5 |g month:10 |g pages:791-795 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0006350910050192 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_4012 | ||
951 | |a AR | ||
952 | |d 55 |j 2010 |e 5 |c 10 |h 791-795 |
author_variant |
d a a da daa a k t ak akt |
---|---|
matchkey_str |
article:00063509:2010----::rpgtooseraeim |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1134/S0006350910050192 doi (DE-627)OLC2067721356 (DE-He213)S0006350910050192-p DE-627 ger DE-627 rakwb eng 570 530 VZ 12 ssgn BIODIV DE-30 fid Afanas’eva, D. A. verfasserin aut Propagation of shear waves in muscle tissue 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of the second type (transverse) propagate without decay even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer was investigated numerically. The values of the problem parameters are found for which one can easily estimate the active tension (or muscle tone) from the characteristics of standing waves. This value is informative for diagnostics of the muscle state. muscle shear waves acoustics muscle tone Tsaturyan, A. K. aut Enthalten in Biophysics SP MAIK Nauka/Interperiodica, 1957 55(2010), 5 vom: Okt., Seite 791-795 (DE-627)12909191X (DE-600)6617-5 (DE-576)014427281 0006-3509 nnns volume:55 year:2010 number:5 month:10 pages:791-795 https://doi.org/10.1134/S0006350910050192 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4012 AR 55 2010 5 10 791-795 |
spelling |
10.1134/S0006350910050192 doi (DE-627)OLC2067721356 (DE-He213)S0006350910050192-p DE-627 ger DE-627 rakwb eng 570 530 VZ 12 ssgn BIODIV DE-30 fid Afanas’eva, D. A. verfasserin aut Propagation of shear waves in muscle tissue 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of the second type (transverse) propagate without decay even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer was investigated numerically. The values of the problem parameters are found for which one can easily estimate the active tension (or muscle tone) from the characteristics of standing waves. This value is informative for diagnostics of the muscle state. muscle shear waves acoustics muscle tone Tsaturyan, A. K. aut Enthalten in Biophysics SP MAIK Nauka/Interperiodica, 1957 55(2010), 5 vom: Okt., Seite 791-795 (DE-627)12909191X (DE-600)6617-5 (DE-576)014427281 0006-3509 nnns volume:55 year:2010 number:5 month:10 pages:791-795 https://doi.org/10.1134/S0006350910050192 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4012 AR 55 2010 5 10 791-795 |
allfields_unstemmed |
10.1134/S0006350910050192 doi (DE-627)OLC2067721356 (DE-He213)S0006350910050192-p DE-627 ger DE-627 rakwb eng 570 530 VZ 12 ssgn BIODIV DE-30 fid Afanas’eva, D. A. verfasserin aut Propagation of shear waves in muscle tissue 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of the second type (transverse) propagate without decay even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer was investigated numerically. The values of the problem parameters are found for which one can easily estimate the active tension (or muscle tone) from the characteristics of standing waves. This value is informative for diagnostics of the muscle state. muscle shear waves acoustics muscle tone Tsaturyan, A. K. aut Enthalten in Biophysics SP MAIK Nauka/Interperiodica, 1957 55(2010), 5 vom: Okt., Seite 791-795 (DE-627)12909191X (DE-600)6617-5 (DE-576)014427281 0006-3509 nnns volume:55 year:2010 number:5 month:10 pages:791-795 https://doi.org/10.1134/S0006350910050192 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4012 AR 55 2010 5 10 791-795 |
allfieldsGer |
10.1134/S0006350910050192 doi (DE-627)OLC2067721356 (DE-He213)S0006350910050192-p DE-627 ger DE-627 rakwb eng 570 530 VZ 12 ssgn BIODIV DE-30 fid Afanas’eva, D. A. verfasserin aut Propagation of shear waves in muscle tissue 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of the second type (transverse) propagate without decay even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer was investigated numerically. The values of the problem parameters are found for which one can easily estimate the active tension (or muscle tone) from the characteristics of standing waves. This value is informative for diagnostics of the muscle state. muscle shear waves acoustics muscle tone Tsaturyan, A. K. aut Enthalten in Biophysics SP MAIK Nauka/Interperiodica, 1957 55(2010), 5 vom: Okt., Seite 791-795 (DE-627)12909191X (DE-600)6617-5 (DE-576)014427281 0006-3509 nnns volume:55 year:2010 number:5 month:10 pages:791-795 https://doi.org/10.1134/S0006350910050192 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4012 AR 55 2010 5 10 791-795 |
allfieldsSound |
10.1134/S0006350910050192 doi (DE-627)OLC2067721356 (DE-He213)S0006350910050192-p DE-627 ger DE-627 rakwb eng 570 530 VZ 12 ssgn BIODIV DE-30 fid Afanas’eva, D. A. verfasserin aut Propagation of shear waves in muscle tissue 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of the second type (transverse) propagate without decay even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer was investigated numerically. The values of the problem parameters are found for which one can easily estimate the active tension (or muscle tone) from the characteristics of standing waves. This value is informative for diagnostics of the muscle state. muscle shear waves acoustics muscle tone Tsaturyan, A. K. aut Enthalten in Biophysics SP MAIK Nauka/Interperiodica, 1957 55(2010), 5 vom: Okt., Seite 791-795 (DE-627)12909191X (DE-600)6617-5 (DE-576)014427281 0006-3509 nnns volume:55 year:2010 number:5 month:10 pages:791-795 https://doi.org/10.1134/S0006350910050192 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4012 AR 55 2010 5 10 791-795 |
language |
English |
source |
Enthalten in Biophysics 55(2010), 5 vom: Okt., Seite 791-795 volume:55 year:2010 number:5 month:10 pages:791-795 |
sourceStr |
Enthalten in Biophysics 55(2010), 5 vom: Okt., Seite 791-795 volume:55 year:2010 number:5 month:10 pages:791-795 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
muscle shear waves acoustics muscle tone |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Biophysics |
authorswithroles_txt_mv |
Afanas’eva, D. A. @@aut@@ Tsaturyan, A. K. @@aut@@ |
publishDateDaySort_date |
2010-10-01T00:00:00Z |
hierarchy_top_id |
12909191X |
dewey-sort |
3570 |
id |
OLC2067721356 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2067721356</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504101802.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0006350910050192</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2067721356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0006350910050192-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Afanas’eva, D. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Propagation of shear waves in muscle tissue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of the second type (transverse) propagate without decay even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer was investigated numerically. The values of the problem parameters are found for which one can easily estimate the active tension (or muscle tone) from the characteristics of standing waves. This value is informative for diagnostics of the muscle state.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">muscle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shear waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">muscle tone</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsaturyan, A. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biophysics</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1957</subfield><subfield code="g">55(2010), 5 vom: Okt., Seite 791-795</subfield><subfield code="w">(DE-627)12909191X</subfield><subfield code="w">(DE-600)6617-5</subfield><subfield code="w">(DE-576)014427281</subfield><subfield code="x">0006-3509</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:5</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:791-795</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0006350910050192</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2010</subfield><subfield code="e">5</subfield><subfield code="c">10</subfield><subfield code="h">791-795</subfield></datafield></record></collection>
|
author |
Afanas’eva, D. A. |
spellingShingle |
Afanas’eva, D. A. ddc 570 ssgn 12 fid BIODIV misc muscle misc shear waves misc acoustics misc muscle tone Propagation of shear waves in muscle tissue |
authorStr |
Afanas’eva, D. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12909191X |
format |
Article |
dewey-ones |
570 - Life sciences; biology 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0006-3509 |
topic_title |
570 530 VZ 12 ssgn BIODIV DE-30 fid Propagation of shear waves in muscle tissue muscle shear waves acoustics muscle tone |
topic |
ddc 570 ssgn 12 fid BIODIV misc muscle misc shear waves misc acoustics misc muscle tone |
topic_unstemmed |
ddc 570 ssgn 12 fid BIODIV misc muscle misc shear waves misc acoustics misc muscle tone |
topic_browse |
ddc 570 ssgn 12 fid BIODIV misc muscle misc shear waves misc acoustics misc muscle tone |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Biophysics |
hierarchy_parent_id |
12909191X |
dewey-tens |
570 - Life sciences; biology 530 - Physics |
hierarchy_top_title |
Biophysics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12909191X (DE-600)6617-5 (DE-576)014427281 |
title |
Propagation of shear waves in muscle tissue |
ctrlnum |
(DE-627)OLC2067721356 (DE-He213)S0006350910050192-p |
title_full |
Propagation of shear waves in muscle tissue |
author_sort |
Afanas’eva, D. A. |
journal |
Biophysics |
journalStr |
Biophysics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
791 |
author_browse |
Afanas’eva, D. A. Tsaturyan, A. K. |
container_volume |
55 |
class |
570 530 VZ 12 ssgn BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Afanas’eva, D. A. |
doi_str_mv |
10.1134/S0006350910050192 |
dewey-full |
570 530 |
title_sort |
propagation of shear waves in muscle tissue |
title_auth |
Propagation of shear waves in muscle tissue |
abstract |
Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of the second type (transverse) propagate without decay even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer was investigated numerically. The values of the problem parameters are found for which one can easily estimate the active tension (or muscle tone) from the characteristics of standing waves. This value is informative for diagnostics of the muscle state. © Pleiades Publishing, Ltd. 2010 |
abstractGer |
Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of the second type (transverse) propagate without decay even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer was investigated numerically. The values of the problem parameters are found for which one can easily estimate the active tension (or muscle tone) from the characteristics of standing waves. This value is informative for diagnostics of the muscle state. © Pleiades Publishing, Ltd. 2010 |
abstract_unstemmed |
Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of the second type (transverse) propagate without decay even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer was investigated numerically. The values of the problem parameters are found for which one can easily estimate the active tension (or muscle tone) from the characteristics of standing waves. This value is informative for diagnostics of the muscle state. © Pleiades Publishing, Ltd. 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4012 |
container_issue |
5 |
title_short |
Propagation of shear waves in muscle tissue |
url |
https://doi.org/10.1134/S0006350910050192 |
remote_bool |
false |
author2 |
Tsaturyan, A. K. |
author2Str |
Tsaturyan, A. K. |
ppnlink |
12909191X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0006350910050192 |
up_date |
2024-07-03T16:11:48.776Z |
_version_ |
1803574951308951552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2067721356</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504101802.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0006350910050192</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2067721356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0006350910050192-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Afanas’eva, D. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Propagation of shear waves in muscle tissue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. Muscle is modeled as an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. There are two types of shear waves in an infinite medium. Waves of the second type (transverse) propagate without decay even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer was investigated numerically. The values of the problem parameters are found for which one can easily estimate the active tension (or muscle tone) from the characteristics of standing waves. This value is informative for diagnostics of the muscle state.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">muscle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shear waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">muscle tone</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsaturyan, A. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biophysics</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1957</subfield><subfield code="g">55(2010), 5 vom: Okt., Seite 791-795</subfield><subfield code="w">(DE-627)12909191X</subfield><subfield code="w">(DE-600)6617-5</subfield><subfield code="w">(DE-576)014427281</subfield><subfield code="x">0006-3509</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:5</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:791-795</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0006350910050192</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2010</subfield><subfield code="e">5</subfield><subfield code="c">10</subfield><subfield code="h">791-795</subfield></datafield></record></collection>
|
score |
7.4031916 |