Measurement of carbon-14 and tritium in the effluent of a gas chromatography column
Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed fo...
Ausführliche Beschreibung
Autor*in: |
Karmen, Arthur [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1967 |
---|
Schlagwörter: |
---|
Anmerkung: |
© American Oil Chemists’ 1967 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the American Oil Chemists’ Society - Springer-Verlag, 1947, 44(1967), 1 vom: Jan., Seite 18-25 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:1967 ; number:1 ; month:01 ; pages:18-25 |
Links: |
---|
DOI / URN: |
10.1007/BF02908364 |
---|
Katalog-ID: |
OLC2068024292 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2068024292 | ||
003 | DE-627 | ||
005 | 20230508062237.0 | ||
007 | tu | ||
008 | 200819s1967 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02908364 |2 doi | |
035 | |a (DE-627)OLC2068024292 | ||
035 | |a (DE-He213)BF02908364-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Karmen, Arthur |e verfasserin |4 aut | |
245 | 1 | 0 | |a Measurement of carbon-14 and tritium in the effluent of a gas chromatography column |
264 | 1 | |c 1967 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © American Oil Chemists’ 1967 | ||
520 | |a Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed for radioactivity during the course of an analysis. The effluent can be passed directly through a heated ionization chamber or proportional counter but both of these are some-what sensitive to changes in the composition of the gas. The effluent can also be combusted to carbon dioxide and water, and the water then converted to HT for tritium assay. These gases can then be assayed in an ionization chamber, proportional counter or flow-through scintillation counter at ambient temperature. The detector volume and gas flow rate can then be large so that changes in gas composition that occur during the course of an analysis are minimized. The gas flow is adjusted for optimal speed of response. Combustion trains have been developed that minimize memory effects in tritium assays that otherwise can cause difficulties. Convenient calibration methods are available for setting up the methods and for determining their efficiencies. When there is insufficient radioactivity in the sample to be measurable during a short time interval, the effluent can be fractionated, high boiling material in each fraction can be condensed out and assayed for radioactivity for longer periods. Automatic and quantitative fraction collecting devices have been developed for use with liquid scintillation counters that make this method of radioassay accurate as well as highly sensitive. | ||
650 | 4 | |a Tritium | |
650 | 4 | |a Anthracene | |
650 | 4 | |a Ionization Chamber | |
650 | 4 | |a Scintillation Counter | |
650 | 4 | |a Proportional Counter | |
773 | 0 | 8 | |i Enthalten in |t Journal of the American Oil Chemists’ Society |d Springer-Verlag, 1947 |g 44(1967), 1 vom: Jan., Seite 18-25 |w (DE-627)129595691 |w (DE-600)240684-6 |w (DE-576)015088715 |x 0003-021X |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:1967 |g number:1 |g month:01 |g pages:18-25 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02908364 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4315 | ||
951 | |a AR | ||
952 | |d 44 |j 1967 |e 1 |c 01 |h 18-25 |
author_variant |
a k ak |
---|---|
matchkey_str |
article:0003021X:1967----::esrmnocro1adrtuitefletfgs |
hierarchy_sort_str |
1967 |
publishDate |
1967 |
allfields |
10.1007/BF02908364 doi (DE-627)OLC2068024292 (DE-He213)BF02908364-p DE-627 ger DE-627 rakwb eng 660 VZ Karmen, Arthur verfasserin aut Measurement of carbon-14 and tritium in the effluent of a gas chromatography column 1967 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © American Oil Chemists’ 1967 Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed for radioactivity during the course of an analysis. The effluent can be passed directly through a heated ionization chamber or proportional counter but both of these are some-what sensitive to changes in the composition of the gas. The effluent can also be combusted to carbon dioxide and water, and the water then converted to HT for tritium assay. These gases can then be assayed in an ionization chamber, proportional counter or flow-through scintillation counter at ambient temperature. The detector volume and gas flow rate can then be large so that changes in gas composition that occur during the course of an analysis are minimized. The gas flow is adjusted for optimal speed of response. Combustion trains have been developed that minimize memory effects in tritium assays that otherwise can cause difficulties. Convenient calibration methods are available for setting up the methods and for determining their efficiencies. When there is insufficient radioactivity in the sample to be measurable during a short time interval, the effluent can be fractionated, high boiling material in each fraction can be condensed out and assayed for radioactivity for longer periods. Automatic and quantitative fraction collecting devices have been developed for use with liquid scintillation counters that make this method of radioassay accurate as well as highly sensitive. Tritium Anthracene Ionization Chamber Scintillation Counter Proportional Counter Enthalten in Journal of the American Oil Chemists’ Society Springer-Verlag, 1947 44(1967), 1 vom: Jan., Seite 18-25 (DE-627)129595691 (DE-600)240684-6 (DE-576)015088715 0003-021X nnns volume:44 year:1967 number:1 month:01 pages:18-25 https://doi.org/10.1007/BF02908364 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_26 GBV_ILN_70 GBV_ILN_74 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4306 GBV_ILN_4315 AR 44 1967 1 01 18-25 |
spelling |
10.1007/BF02908364 doi (DE-627)OLC2068024292 (DE-He213)BF02908364-p DE-627 ger DE-627 rakwb eng 660 VZ Karmen, Arthur verfasserin aut Measurement of carbon-14 and tritium in the effluent of a gas chromatography column 1967 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © American Oil Chemists’ 1967 Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed for radioactivity during the course of an analysis. The effluent can be passed directly through a heated ionization chamber or proportional counter but both of these are some-what sensitive to changes in the composition of the gas. The effluent can also be combusted to carbon dioxide and water, and the water then converted to HT for tritium assay. These gases can then be assayed in an ionization chamber, proportional counter or flow-through scintillation counter at ambient temperature. The detector volume and gas flow rate can then be large so that changes in gas composition that occur during the course of an analysis are minimized. The gas flow is adjusted for optimal speed of response. Combustion trains have been developed that minimize memory effects in tritium assays that otherwise can cause difficulties. Convenient calibration methods are available for setting up the methods and for determining their efficiencies. When there is insufficient radioactivity in the sample to be measurable during a short time interval, the effluent can be fractionated, high boiling material in each fraction can be condensed out and assayed for radioactivity for longer periods. Automatic and quantitative fraction collecting devices have been developed for use with liquid scintillation counters that make this method of radioassay accurate as well as highly sensitive. Tritium Anthracene Ionization Chamber Scintillation Counter Proportional Counter Enthalten in Journal of the American Oil Chemists’ Society Springer-Verlag, 1947 44(1967), 1 vom: Jan., Seite 18-25 (DE-627)129595691 (DE-600)240684-6 (DE-576)015088715 0003-021X nnns volume:44 year:1967 number:1 month:01 pages:18-25 https://doi.org/10.1007/BF02908364 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_26 GBV_ILN_70 GBV_ILN_74 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4306 GBV_ILN_4315 AR 44 1967 1 01 18-25 |
allfields_unstemmed |
10.1007/BF02908364 doi (DE-627)OLC2068024292 (DE-He213)BF02908364-p DE-627 ger DE-627 rakwb eng 660 VZ Karmen, Arthur verfasserin aut Measurement of carbon-14 and tritium in the effluent of a gas chromatography column 1967 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © American Oil Chemists’ 1967 Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed for radioactivity during the course of an analysis. The effluent can be passed directly through a heated ionization chamber or proportional counter but both of these are some-what sensitive to changes in the composition of the gas. The effluent can also be combusted to carbon dioxide and water, and the water then converted to HT for tritium assay. These gases can then be assayed in an ionization chamber, proportional counter or flow-through scintillation counter at ambient temperature. The detector volume and gas flow rate can then be large so that changes in gas composition that occur during the course of an analysis are minimized. The gas flow is adjusted for optimal speed of response. Combustion trains have been developed that minimize memory effects in tritium assays that otherwise can cause difficulties. Convenient calibration methods are available for setting up the methods and for determining their efficiencies. When there is insufficient radioactivity in the sample to be measurable during a short time interval, the effluent can be fractionated, high boiling material in each fraction can be condensed out and assayed for radioactivity for longer periods. Automatic and quantitative fraction collecting devices have been developed for use with liquid scintillation counters that make this method of radioassay accurate as well as highly sensitive. Tritium Anthracene Ionization Chamber Scintillation Counter Proportional Counter Enthalten in Journal of the American Oil Chemists’ Society Springer-Verlag, 1947 44(1967), 1 vom: Jan., Seite 18-25 (DE-627)129595691 (DE-600)240684-6 (DE-576)015088715 0003-021X nnns volume:44 year:1967 number:1 month:01 pages:18-25 https://doi.org/10.1007/BF02908364 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_26 GBV_ILN_70 GBV_ILN_74 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4306 GBV_ILN_4315 AR 44 1967 1 01 18-25 |
allfieldsGer |
10.1007/BF02908364 doi (DE-627)OLC2068024292 (DE-He213)BF02908364-p DE-627 ger DE-627 rakwb eng 660 VZ Karmen, Arthur verfasserin aut Measurement of carbon-14 and tritium in the effluent of a gas chromatography column 1967 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © American Oil Chemists’ 1967 Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed for radioactivity during the course of an analysis. The effluent can be passed directly through a heated ionization chamber or proportional counter but both of these are some-what sensitive to changes in the composition of the gas. The effluent can also be combusted to carbon dioxide and water, and the water then converted to HT for tritium assay. These gases can then be assayed in an ionization chamber, proportional counter or flow-through scintillation counter at ambient temperature. The detector volume and gas flow rate can then be large so that changes in gas composition that occur during the course of an analysis are minimized. The gas flow is adjusted for optimal speed of response. Combustion trains have been developed that minimize memory effects in tritium assays that otherwise can cause difficulties. Convenient calibration methods are available for setting up the methods and for determining their efficiencies. When there is insufficient radioactivity in the sample to be measurable during a short time interval, the effluent can be fractionated, high boiling material in each fraction can be condensed out and assayed for radioactivity for longer periods. Automatic and quantitative fraction collecting devices have been developed for use with liquid scintillation counters that make this method of radioassay accurate as well as highly sensitive. Tritium Anthracene Ionization Chamber Scintillation Counter Proportional Counter Enthalten in Journal of the American Oil Chemists’ Society Springer-Verlag, 1947 44(1967), 1 vom: Jan., Seite 18-25 (DE-627)129595691 (DE-600)240684-6 (DE-576)015088715 0003-021X nnns volume:44 year:1967 number:1 month:01 pages:18-25 https://doi.org/10.1007/BF02908364 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_26 GBV_ILN_70 GBV_ILN_74 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4306 GBV_ILN_4315 AR 44 1967 1 01 18-25 |
allfieldsSound |
10.1007/BF02908364 doi (DE-627)OLC2068024292 (DE-He213)BF02908364-p DE-627 ger DE-627 rakwb eng 660 VZ Karmen, Arthur verfasserin aut Measurement of carbon-14 and tritium in the effluent of a gas chromatography column 1967 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © American Oil Chemists’ 1967 Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed for radioactivity during the course of an analysis. The effluent can be passed directly through a heated ionization chamber or proportional counter but both of these are some-what sensitive to changes in the composition of the gas. The effluent can also be combusted to carbon dioxide and water, and the water then converted to HT for tritium assay. These gases can then be assayed in an ionization chamber, proportional counter or flow-through scintillation counter at ambient temperature. The detector volume and gas flow rate can then be large so that changes in gas composition that occur during the course of an analysis are minimized. The gas flow is adjusted for optimal speed of response. Combustion trains have been developed that minimize memory effects in tritium assays that otherwise can cause difficulties. Convenient calibration methods are available for setting up the methods and for determining their efficiencies. When there is insufficient radioactivity in the sample to be measurable during a short time interval, the effluent can be fractionated, high boiling material in each fraction can be condensed out and assayed for radioactivity for longer periods. Automatic and quantitative fraction collecting devices have been developed for use with liquid scintillation counters that make this method of radioassay accurate as well as highly sensitive. Tritium Anthracene Ionization Chamber Scintillation Counter Proportional Counter Enthalten in Journal of the American Oil Chemists’ Society Springer-Verlag, 1947 44(1967), 1 vom: Jan., Seite 18-25 (DE-627)129595691 (DE-600)240684-6 (DE-576)015088715 0003-021X nnns volume:44 year:1967 number:1 month:01 pages:18-25 https://doi.org/10.1007/BF02908364 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_26 GBV_ILN_70 GBV_ILN_74 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4306 GBV_ILN_4315 AR 44 1967 1 01 18-25 |
language |
English |
source |
Enthalten in Journal of the American Oil Chemists’ Society 44(1967), 1 vom: Jan., Seite 18-25 volume:44 year:1967 number:1 month:01 pages:18-25 |
sourceStr |
Enthalten in Journal of the American Oil Chemists’ Society 44(1967), 1 vom: Jan., Seite 18-25 volume:44 year:1967 number:1 month:01 pages:18-25 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tritium Anthracene Ionization Chamber Scintillation Counter Proportional Counter |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of the American Oil Chemists’ Society |
authorswithroles_txt_mv |
Karmen, Arthur @@aut@@ |
publishDateDaySort_date |
1967-01-01T00:00:00Z |
hierarchy_top_id |
129595691 |
dewey-sort |
3660 |
id |
OLC2068024292 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2068024292</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508062237.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1967 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02908364</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2068024292</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02908364-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karmen, Arthur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurement of carbon-14 and tritium in the effluent of a gas chromatography column</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1967</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© American Oil Chemists’ 1967</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed for radioactivity during the course of an analysis. The effluent can be passed directly through a heated ionization chamber or proportional counter but both of these are some-what sensitive to changes in the composition of the gas. The effluent can also be combusted to carbon dioxide and water, and the water then converted to HT for tritium assay. These gases can then be assayed in an ionization chamber, proportional counter or flow-through scintillation counter at ambient temperature. The detector volume and gas flow rate can then be large so that changes in gas composition that occur during the course of an analysis are minimized. The gas flow is adjusted for optimal speed of response. Combustion trains have been developed that minimize memory effects in tritium assays that otherwise can cause difficulties. Convenient calibration methods are available for setting up the methods and for determining their efficiencies. When there is insufficient radioactivity in the sample to be measurable during a short time interval, the effluent can be fractionated, high boiling material in each fraction can be condensed out and assayed for radioactivity for longer periods. Automatic and quantitative fraction collecting devices have been developed for use with liquid scintillation counters that make this method of radioassay accurate as well as highly sensitive.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tritium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anthracene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionization Chamber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scintillation Counter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proportional Counter</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the American Oil Chemists’ Society</subfield><subfield code="d">Springer-Verlag, 1947</subfield><subfield code="g">44(1967), 1 vom: Jan., Seite 18-25</subfield><subfield code="w">(DE-627)129595691</subfield><subfield code="w">(DE-600)240684-6</subfield><subfield code="w">(DE-576)015088715</subfield><subfield code="x">0003-021X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:1967</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:18-25</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02908364</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">1967</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">18-25</subfield></datafield></record></collection>
|
author |
Karmen, Arthur |
spellingShingle |
Karmen, Arthur ddc 660 misc Tritium misc Anthracene misc Ionization Chamber misc Scintillation Counter misc Proportional Counter Measurement of carbon-14 and tritium in the effluent of a gas chromatography column |
authorStr |
Karmen, Arthur |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129595691 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0003-021X |
topic_title |
660 VZ Measurement of carbon-14 and tritium in the effluent of a gas chromatography column Tritium Anthracene Ionization Chamber Scintillation Counter Proportional Counter |
topic |
ddc 660 misc Tritium misc Anthracene misc Ionization Chamber misc Scintillation Counter misc Proportional Counter |
topic_unstemmed |
ddc 660 misc Tritium misc Anthracene misc Ionization Chamber misc Scintillation Counter misc Proportional Counter |
topic_browse |
ddc 660 misc Tritium misc Anthracene misc Ionization Chamber misc Scintillation Counter misc Proportional Counter |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of the American Oil Chemists’ Society |
hierarchy_parent_id |
129595691 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of the American Oil Chemists’ Society |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129595691 (DE-600)240684-6 (DE-576)015088715 |
title |
Measurement of carbon-14 and tritium in the effluent of a gas chromatography column |
ctrlnum |
(DE-627)OLC2068024292 (DE-He213)BF02908364-p |
title_full |
Measurement of carbon-14 and tritium in the effluent of a gas chromatography column |
author_sort |
Karmen, Arthur |
journal |
Journal of the American Oil Chemists’ Society |
journalStr |
Journal of the American Oil Chemists’ Society |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1967 |
contenttype_str_mv |
txt |
container_start_page |
18 |
author_browse |
Karmen, Arthur |
container_volume |
44 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Karmen, Arthur |
doi_str_mv |
10.1007/BF02908364 |
dewey-full |
660 |
title_sort |
measurement of carbon-14 and tritium in the effluent of a gas chromatography column |
title_auth |
Measurement of carbon-14 and tritium in the effluent of a gas chromatography column |
abstract |
Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed for radioactivity during the course of an analysis. The effluent can be passed directly through a heated ionization chamber or proportional counter but both of these are some-what sensitive to changes in the composition of the gas. The effluent can also be combusted to carbon dioxide and water, and the water then converted to HT for tritium assay. These gases can then be assayed in an ionization chamber, proportional counter or flow-through scintillation counter at ambient temperature. The detector volume and gas flow rate can then be large so that changes in gas composition that occur during the course of an analysis are minimized. The gas flow is adjusted for optimal speed of response. Combustion trains have been developed that minimize memory effects in tritium assays that otherwise can cause difficulties. Convenient calibration methods are available for setting up the methods and for determining their efficiencies. When there is insufficient radioactivity in the sample to be measurable during a short time interval, the effluent can be fractionated, high boiling material in each fraction can be condensed out and assayed for radioactivity for longer periods. Automatic and quantitative fraction collecting devices have been developed for use with liquid scintillation counters that make this method of radioassay accurate as well as highly sensitive. © American Oil Chemists’ 1967 |
abstractGer |
Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed for radioactivity during the course of an analysis. The effluent can be passed directly through a heated ionization chamber or proportional counter but both of these are some-what sensitive to changes in the composition of the gas. The effluent can also be combusted to carbon dioxide and water, and the water then converted to HT for tritium assay. These gases can then be assayed in an ionization chamber, proportional counter or flow-through scintillation counter at ambient temperature. The detector volume and gas flow rate can then be large so that changes in gas composition that occur during the course of an analysis are minimized. The gas flow is adjusted for optimal speed of response. Combustion trains have been developed that minimize memory effects in tritium assays that otherwise can cause difficulties. Convenient calibration methods are available for setting up the methods and for determining their efficiencies. When there is insufficient radioactivity in the sample to be measurable during a short time interval, the effluent can be fractionated, high boiling material in each fraction can be condensed out and assayed for radioactivity for longer periods. Automatic and quantitative fraction collecting devices have been developed for use with liquid scintillation counters that make this method of radioassay accurate as well as highly sensitive. © American Oil Chemists’ 1967 |
abstract_unstemmed |
Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed for radioactivity during the course of an analysis. The effluent can be passed directly through a heated ionization chamber or proportional counter but both of these are some-what sensitive to changes in the composition of the gas. The effluent can also be combusted to carbon dioxide and water, and the water then converted to HT for tritium assay. These gases can then be assayed in an ionization chamber, proportional counter or flow-through scintillation counter at ambient temperature. The detector volume and gas flow rate can then be large so that changes in gas composition that occur during the course of an analysis are minimized. The gas flow is adjusted for optimal speed of response. Combustion trains have been developed that minimize memory effects in tritium assays that otherwise can cause difficulties. Convenient calibration methods are available for setting up the methods and for determining their efficiencies. When there is insufficient radioactivity in the sample to be measurable during a short time interval, the effluent can be fractionated, high boiling material in each fraction can be condensed out and assayed for radioactivity for longer periods. Automatic and quantitative fraction collecting devices have been developed for use with liquid scintillation counters that make this method of radioassay accurate as well as highly sensitive. © American Oil Chemists’ 1967 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_26 GBV_ILN_70 GBV_ILN_74 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4306 GBV_ILN_4315 |
container_issue |
1 |
title_short |
Measurement of carbon-14 and tritium in the effluent of a gas chromatography column |
url |
https://doi.org/10.1007/BF02908364 |
remote_bool |
false |
ppnlink |
129595691 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02908364 |
up_date |
2024-07-03T17:21:15.461Z |
_version_ |
1803579320395890688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2068024292</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508062237.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1967 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02908364</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2068024292</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02908364-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karmen, Arthur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurement of carbon-14 and tritium in the effluent of a gas chromatography column</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1967</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© American Oil Chemists’ 1967</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Several methods of measuring radioactivity in the effluent of a gas-liquid chromatography (GLC) column are reviewed. If there is sufficient radioactivity in individual compounds to be measurable with acceptable precision in less than 15–20 see, the effluent of a GLC column can be assayed for radioactivity during the course of an analysis. The effluent can be passed directly through a heated ionization chamber or proportional counter but both of these are some-what sensitive to changes in the composition of the gas. The effluent can also be combusted to carbon dioxide and water, and the water then converted to HT for tritium assay. These gases can then be assayed in an ionization chamber, proportional counter or flow-through scintillation counter at ambient temperature. The detector volume and gas flow rate can then be large so that changes in gas composition that occur during the course of an analysis are minimized. The gas flow is adjusted for optimal speed of response. Combustion trains have been developed that minimize memory effects in tritium assays that otherwise can cause difficulties. Convenient calibration methods are available for setting up the methods and for determining their efficiencies. When there is insufficient radioactivity in the sample to be measurable during a short time interval, the effluent can be fractionated, high boiling material in each fraction can be condensed out and assayed for radioactivity for longer periods. Automatic and quantitative fraction collecting devices have been developed for use with liquid scintillation counters that make this method of radioassay accurate as well as highly sensitive.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tritium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anthracene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionization Chamber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scintillation Counter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proportional Counter</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the American Oil Chemists’ Society</subfield><subfield code="d">Springer-Verlag, 1947</subfield><subfield code="g">44(1967), 1 vom: Jan., Seite 18-25</subfield><subfield code="w">(DE-627)129595691</subfield><subfield code="w">(DE-600)240684-6</subfield><subfield code="w">(DE-576)015088715</subfield><subfield code="x">0003-021X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:1967</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:18-25</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02908364</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">1967</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">18-25</subfield></datafield></record></collection>
|
score |
7.401737 |