Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable
Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM...
Ausführliche Beschreibung
Autor*in: |
Modenutti, Beatriz [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Basel 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Aquatic sciences - SP Birkhäuser Verlag Basel, 1989, 75(2012), 3 vom: 10. Nov., Seite 361-371 |
---|---|
Übergeordnetes Werk: |
volume:75 ; year:2012 ; number:3 ; day:10 ; month:11 ; pages:361-371 |
Links: |
---|
DOI / URN: |
10.1007/s00027-012-0282-3 |
---|
Katalog-ID: |
OLC2068824299 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2068824299 | ||
003 | DE-627 | ||
005 | 20230511143758.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00027-012-0282-3 |2 doi | |
035 | |a (DE-627)OLC2068824299 | ||
035 | |a (DE-He213)s00027-012-0282-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
082 | 0 | 4 | |a 570 |a 550 |q VZ |
084 | |a 12 |a 14 |a 13 |a 21,3 |2 ssgn | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.00 |2 bkl | ||
100 | 1 | |a Modenutti, Beatriz |e verfasserin |4 aut | |
245 | 1 | 0 | |a Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Basel 2012 | ||
520 | |a Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions. | ||
650 | 4 | |a Light climate | |
650 | 4 | |a Lakes | |
650 | 4 | |a Chlorophyll distribution | |
650 | 4 | |a Transparent lakes | |
650 | 4 | |a Climate change | |
650 | 4 | |a Total suspended solids | |
700 | 1 | |a Balseiro, Esteban |4 aut | |
700 | 1 | |a Bastidas Navarro, Marcela |4 aut | |
700 | 1 | |a Laspoumaderes, Cecilia |4 aut | |
700 | 1 | |a Souza, María Sol |4 aut | |
700 | 1 | |a Cuassolo, Florencia |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Aquatic sciences |d SP Birkhäuser Verlag Basel, 1989 |g 75(2012), 3 vom: 10. Nov., Seite 361-371 |w (DE-627)130758795 |w (DE-600)1000078-1 |w (DE-576)023035080 |x 1015-1621 |7 nnns |
773 | 1 | 8 | |g volume:75 |g year:2012 |g number:3 |g day:10 |g month:11 |g pages:361-371 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00027-012-0282-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4319 | ||
936 | b | k | |a 42.00 |q VZ |
951 | |a AR | ||
952 | |d 75 |j 2012 |e 3 |b 10 |c 11 |h 361-371 |
author_variant |
b m bm e b eb n m b nm nmb c l cl m s s ms mss f c fc |
---|---|
matchkey_str |
article:10151621:2012----::niomnacagsfetnlgtlmtioiorpimutilkshdeclrpy |
hierarchy_sort_str |
2012 |
bklnumber |
42.00 |
publishDate |
2012 |
allfields |
10.1007/s00027-012-0282-3 doi (DE-627)OLC2068824299 (DE-He213)s00027-012-0282-3-p DE-627 ger DE-627 rakwb eng 550 VZ 570 550 VZ 12 14 13 21,3 ssgn BIODIV DE-30 fid 42.00 bkl Modenutti, Beatriz verfasserin aut Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2012 Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions. Light climate Lakes Chlorophyll distribution Transparent lakes Climate change Total suspended solids Balseiro, Esteban aut Bastidas Navarro, Marcela aut Laspoumaderes, Cecilia aut Souza, María Sol aut Cuassolo, Florencia aut Enthalten in Aquatic sciences SP Birkhäuser Verlag Basel, 1989 75(2012), 3 vom: 10. Nov., Seite 361-371 (DE-627)130758795 (DE-600)1000078-1 (DE-576)023035080 1015-1621 nnns volume:75 year:2012 number:3 day:10 month:11 pages:361-371 https://doi.org/10.1007/s00027-012-0282-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4319 42.00 VZ AR 75 2012 3 10 11 361-371 |
spelling |
10.1007/s00027-012-0282-3 doi (DE-627)OLC2068824299 (DE-He213)s00027-012-0282-3-p DE-627 ger DE-627 rakwb eng 550 VZ 570 550 VZ 12 14 13 21,3 ssgn BIODIV DE-30 fid 42.00 bkl Modenutti, Beatriz verfasserin aut Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2012 Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions. Light climate Lakes Chlorophyll distribution Transparent lakes Climate change Total suspended solids Balseiro, Esteban aut Bastidas Navarro, Marcela aut Laspoumaderes, Cecilia aut Souza, María Sol aut Cuassolo, Florencia aut Enthalten in Aquatic sciences SP Birkhäuser Verlag Basel, 1989 75(2012), 3 vom: 10. Nov., Seite 361-371 (DE-627)130758795 (DE-600)1000078-1 (DE-576)023035080 1015-1621 nnns volume:75 year:2012 number:3 day:10 month:11 pages:361-371 https://doi.org/10.1007/s00027-012-0282-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4319 42.00 VZ AR 75 2012 3 10 11 361-371 |
allfields_unstemmed |
10.1007/s00027-012-0282-3 doi (DE-627)OLC2068824299 (DE-He213)s00027-012-0282-3-p DE-627 ger DE-627 rakwb eng 550 VZ 570 550 VZ 12 14 13 21,3 ssgn BIODIV DE-30 fid 42.00 bkl Modenutti, Beatriz verfasserin aut Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2012 Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions. Light climate Lakes Chlorophyll distribution Transparent lakes Climate change Total suspended solids Balseiro, Esteban aut Bastidas Navarro, Marcela aut Laspoumaderes, Cecilia aut Souza, María Sol aut Cuassolo, Florencia aut Enthalten in Aquatic sciences SP Birkhäuser Verlag Basel, 1989 75(2012), 3 vom: 10. Nov., Seite 361-371 (DE-627)130758795 (DE-600)1000078-1 (DE-576)023035080 1015-1621 nnns volume:75 year:2012 number:3 day:10 month:11 pages:361-371 https://doi.org/10.1007/s00027-012-0282-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4319 42.00 VZ AR 75 2012 3 10 11 361-371 |
allfieldsGer |
10.1007/s00027-012-0282-3 doi (DE-627)OLC2068824299 (DE-He213)s00027-012-0282-3-p DE-627 ger DE-627 rakwb eng 550 VZ 570 550 VZ 12 14 13 21,3 ssgn BIODIV DE-30 fid 42.00 bkl Modenutti, Beatriz verfasserin aut Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2012 Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions. Light climate Lakes Chlorophyll distribution Transparent lakes Climate change Total suspended solids Balseiro, Esteban aut Bastidas Navarro, Marcela aut Laspoumaderes, Cecilia aut Souza, María Sol aut Cuassolo, Florencia aut Enthalten in Aquatic sciences SP Birkhäuser Verlag Basel, 1989 75(2012), 3 vom: 10. Nov., Seite 361-371 (DE-627)130758795 (DE-600)1000078-1 (DE-576)023035080 1015-1621 nnns volume:75 year:2012 number:3 day:10 month:11 pages:361-371 https://doi.org/10.1007/s00027-012-0282-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4319 42.00 VZ AR 75 2012 3 10 11 361-371 |
allfieldsSound |
10.1007/s00027-012-0282-3 doi (DE-627)OLC2068824299 (DE-He213)s00027-012-0282-3-p DE-627 ger DE-627 rakwb eng 550 VZ 570 550 VZ 12 14 13 21,3 ssgn BIODIV DE-30 fid 42.00 bkl Modenutti, Beatriz verfasserin aut Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2012 Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions. Light climate Lakes Chlorophyll distribution Transparent lakes Climate change Total suspended solids Balseiro, Esteban aut Bastidas Navarro, Marcela aut Laspoumaderes, Cecilia aut Souza, María Sol aut Cuassolo, Florencia aut Enthalten in Aquatic sciences SP Birkhäuser Verlag Basel, 1989 75(2012), 3 vom: 10. Nov., Seite 361-371 (DE-627)130758795 (DE-600)1000078-1 (DE-576)023035080 1015-1621 nnns volume:75 year:2012 number:3 day:10 month:11 pages:361-371 https://doi.org/10.1007/s00027-012-0282-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4319 42.00 VZ AR 75 2012 3 10 11 361-371 |
language |
English |
source |
Enthalten in Aquatic sciences 75(2012), 3 vom: 10. Nov., Seite 361-371 volume:75 year:2012 number:3 day:10 month:11 pages:361-371 |
sourceStr |
Enthalten in Aquatic sciences 75(2012), 3 vom: 10. Nov., Seite 361-371 volume:75 year:2012 number:3 day:10 month:11 pages:361-371 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Light climate Lakes Chlorophyll distribution Transparent lakes Climate change Total suspended solids |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Aquatic sciences |
authorswithroles_txt_mv |
Modenutti, Beatriz @@aut@@ Balseiro, Esteban @@aut@@ Bastidas Navarro, Marcela @@aut@@ Laspoumaderes, Cecilia @@aut@@ Souza, María Sol @@aut@@ Cuassolo, Florencia @@aut@@ |
publishDateDaySort_date |
2012-11-10T00:00:00Z |
hierarchy_top_id |
130758795 |
dewey-sort |
3550 |
id |
OLC2068824299 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2068824299</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511143758.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00027-012-0282-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2068824299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00027-012-0282-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="a">14</subfield><subfield code="a">13</subfield><subfield code="a">21,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Modenutti, Beatriz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Basel 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lakes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chlorophyll distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transparent lakes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total suspended solids</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balseiro, Esteban</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bastidas Navarro, Marcela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laspoumaderes, Cecilia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Souza, María Sol</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cuassolo, Florencia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Aquatic sciences</subfield><subfield code="d">SP Birkhäuser Verlag Basel, 1989</subfield><subfield code="g">75(2012), 3 vom: 10. Nov., Seite 361-371</subfield><subfield code="w">(DE-627)130758795</subfield><subfield code="w">(DE-600)1000078-1</subfield><subfield code="w">(DE-576)023035080</subfield><subfield code="x">1015-1621</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:10</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:361-371</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00027-012-0282-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">10</subfield><subfield code="c">11</subfield><subfield code="h">361-371</subfield></datafield></record></collection>
|
author |
Modenutti, Beatriz |
spellingShingle |
Modenutti, Beatriz ddc 550 ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Light climate misc Lakes misc Chlorophyll distribution misc Transparent lakes misc Climate change misc Total suspended solids Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable |
authorStr |
Modenutti, Beatriz |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130758795 |
format |
Article |
dewey-ones |
550 - Earth sciences 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1015-1621 |
topic_title |
550 VZ 570 550 VZ 12 14 13 21,3 ssgn BIODIV DE-30 fid 42.00 bkl Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable Light climate Lakes Chlorophyll distribution Transparent lakes Climate change Total suspended solids |
topic |
ddc 550 ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Light climate misc Lakes misc Chlorophyll distribution misc Transparent lakes misc Climate change misc Total suspended solids |
topic_unstemmed |
ddc 550 ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Light climate misc Lakes misc Chlorophyll distribution misc Transparent lakes misc Climate change misc Total suspended solids |
topic_browse |
ddc 550 ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Light climate misc Lakes misc Chlorophyll distribution misc Transparent lakes misc Climate change misc Total suspended solids |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Aquatic sciences |
hierarchy_parent_id |
130758795 |
dewey-tens |
550 - Earth sciences & geology 570 - Life sciences; biology |
hierarchy_top_title |
Aquatic sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130758795 (DE-600)1000078-1 (DE-576)023035080 |
title |
Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable |
ctrlnum |
(DE-627)OLC2068824299 (DE-He213)s00027-012-0282-3-p |
title_full |
Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable |
author_sort |
Modenutti, Beatriz |
journal |
Aquatic sciences |
journalStr |
Aquatic sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
361 |
author_browse |
Modenutti, Beatriz Balseiro, Esteban Bastidas Navarro, Marcela Laspoumaderes, Cecilia Souza, María Sol Cuassolo, Florencia |
container_volume |
75 |
class |
550 VZ 570 550 VZ 12 14 13 21,3 ssgn BIODIV DE-30 fid 42.00 bkl |
format_se |
Aufsätze |
author-letter |
Modenutti, Beatriz |
doi_str_mv |
10.1007/s00027-012-0282-3 |
dewey-full |
550 570 |
title_sort |
environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable |
title_auth |
Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable |
abstract |
Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions. © Springer Basel 2012 |
abstractGer |
Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions. © Springer Basel 2012 |
abstract_unstemmed |
Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions. © Springer Basel 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4319 |
container_issue |
3 |
title_short |
Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable |
url |
https://doi.org/10.1007/s00027-012-0282-3 |
remote_bool |
false |
author2 |
Balseiro, Esteban Bastidas Navarro, Marcela Laspoumaderes, Cecilia Souza, María Sol Cuassolo, Florencia |
author2Str |
Balseiro, Esteban Bastidas Navarro, Marcela Laspoumaderes, Cecilia Souza, María Sol Cuassolo, Florencia |
ppnlink |
130758795 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00027-012-0282-3 |
up_date |
2024-07-03T19:58:00.901Z |
_version_ |
1803589182714544128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2068824299</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511143758.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00027-012-0282-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2068824299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00027-012-0282-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="a">14</subfield><subfield code="a">13</subfield><subfield code="a">21,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Modenutti, Beatriz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Basel 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lakes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chlorophyll distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transparent lakes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total suspended solids</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balseiro, Esteban</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bastidas Navarro, Marcela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laspoumaderes, Cecilia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Souza, María Sol</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cuassolo, Florencia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Aquatic sciences</subfield><subfield code="d">SP Birkhäuser Verlag Basel, 1989</subfield><subfield code="g">75(2012), 3 vom: 10. Nov., Seite 361-371</subfield><subfield code="w">(DE-627)130758795</subfield><subfield code="w">(DE-600)1000078-1</subfield><subfield code="w">(DE-576)023035080</subfield><subfield code="x">1015-1621</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:10</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:361-371</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00027-012-0282-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">10</subfield><subfield code="c">11</subfield><subfield code="h">361-371</subfield></datafield></record></collection>
|
score |
7.3987684 |