Weak distributive laws and their role in free lattices
Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much st...
Ausführliche Beschreibung
Autor*in: |
Reinhold, J. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1995 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Birkhäuser Verlag 1995 |
---|
Übergeordnetes Werk: |
Enthalten in: Algebra universalis - Birkhäuser-Verlag, 1971, 33(1995), 2 vom: Juni, Seite 209-215 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:1995 ; number:2 ; month:06 ; pages:209-215 |
Links: |
---|
DOI / URN: |
10.1007/BF01190933 |
---|
Katalog-ID: |
OLC2069281523 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2069281523 | ||
003 | DE-627 | ||
005 | 20230323100348.0 | ||
007 | tu | ||
008 | 200819s1995 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01190933 |2 doi | |
035 | |a (DE-627)OLC2069281523 | ||
035 | |a (DE-He213)BF01190933-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Reinhold, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Weak distributive laws and their role in free lattices |
264 | 1 | |c 1995 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag 1995 | ||
520 | |a Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much stronger in the infinity case, entailing not only λ-continuity but staircase distributivity, a property that is inherited by sublattices. | ||
650 | 4 | |a Finite Lattice | |
650 | 4 | |a Free Lattice | |
650 | 4 | |a Staircase Distributivity | |
773 | 0 | 8 | |i Enthalten in |t Algebra universalis |d Birkhäuser-Verlag, 1971 |g 33(1995), 2 vom: Juni, Seite 209-215 |w (DE-627)129291129 |w (DE-600)120470-1 |w (DE-576)014472449 |x 0002-5240 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:1995 |g number:2 |g month:06 |g pages:209-215 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01190933 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 33 |j 1995 |e 2 |c 06 |h 209-215 |
author_variant |
j r jr |
---|---|
matchkey_str |
article:00025240:1995----::ekitiuieasnteroe |
hierarchy_sort_str |
1995 |
publishDate |
1995 |
allfields |
10.1007/BF01190933 doi (DE-627)OLC2069281523 (DE-He213)BF01190933-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Reinhold, J. verfasserin aut Weak distributive laws and their role in free lattices 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1995 Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much stronger in the infinity case, entailing not only λ-continuity but staircase distributivity, a property that is inherited by sublattices. Finite Lattice Free Lattice Staircase Distributivity Enthalten in Algebra universalis Birkhäuser-Verlag, 1971 33(1995), 2 vom: Juni, Seite 209-215 (DE-627)129291129 (DE-600)120470-1 (DE-576)014472449 0002-5240 nnns volume:33 year:1995 number:2 month:06 pages:209-215 https://doi.org/10.1007/BF01190933 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 AR 33 1995 2 06 209-215 |
spelling |
10.1007/BF01190933 doi (DE-627)OLC2069281523 (DE-He213)BF01190933-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Reinhold, J. verfasserin aut Weak distributive laws and their role in free lattices 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1995 Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much stronger in the infinity case, entailing not only λ-continuity but staircase distributivity, a property that is inherited by sublattices. Finite Lattice Free Lattice Staircase Distributivity Enthalten in Algebra universalis Birkhäuser-Verlag, 1971 33(1995), 2 vom: Juni, Seite 209-215 (DE-627)129291129 (DE-600)120470-1 (DE-576)014472449 0002-5240 nnns volume:33 year:1995 number:2 month:06 pages:209-215 https://doi.org/10.1007/BF01190933 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 AR 33 1995 2 06 209-215 |
allfields_unstemmed |
10.1007/BF01190933 doi (DE-627)OLC2069281523 (DE-He213)BF01190933-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Reinhold, J. verfasserin aut Weak distributive laws and their role in free lattices 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1995 Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much stronger in the infinity case, entailing not only λ-continuity but staircase distributivity, a property that is inherited by sublattices. Finite Lattice Free Lattice Staircase Distributivity Enthalten in Algebra universalis Birkhäuser-Verlag, 1971 33(1995), 2 vom: Juni, Seite 209-215 (DE-627)129291129 (DE-600)120470-1 (DE-576)014472449 0002-5240 nnns volume:33 year:1995 number:2 month:06 pages:209-215 https://doi.org/10.1007/BF01190933 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 AR 33 1995 2 06 209-215 |
allfieldsGer |
10.1007/BF01190933 doi (DE-627)OLC2069281523 (DE-He213)BF01190933-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Reinhold, J. verfasserin aut Weak distributive laws and their role in free lattices 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1995 Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much stronger in the infinity case, entailing not only λ-continuity but staircase distributivity, a property that is inherited by sublattices. Finite Lattice Free Lattice Staircase Distributivity Enthalten in Algebra universalis Birkhäuser-Verlag, 1971 33(1995), 2 vom: Juni, Seite 209-215 (DE-627)129291129 (DE-600)120470-1 (DE-576)014472449 0002-5240 nnns volume:33 year:1995 number:2 month:06 pages:209-215 https://doi.org/10.1007/BF01190933 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 AR 33 1995 2 06 209-215 |
allfieldsSound |
10.1007/BF01190933 doi (DE-627)OLC2069281523 (DE-He213)BF01190933-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Reinhold, J. verfasserin aut Weak distributive laws and their role in free lattices 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1995 Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much stronger in the infinity case, entailing not only λ-continuity but staircase distributivity, a property that is inherited by sublattices. Finite Lattice Free Lattice Staircase Distributivity Enthalten in Algebra universalis Birkhäuser-Verlag, 1971 33(1995), 2 vom: Juni, Seite 209-215 (DE-627)129291129 (DE-600)120470-1 (DE-576)014472449 0002-5240 nnns volume:33 year:1995 number:2 month:06 pages:209-215 https://doi.org/10.1007/BF01190933 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 AR 33 1995 2 06 209-215 |
language |
English |
source |
Enthalten in Algebra universalis 33(1995), 2 vom: Juni, Seite 209-215 volume:33 year:1995 number:2 month:06 pages:209-215 |
sourceStr |
Enthalten in Algebra universalis 33(1995), 2 vom: Juni, Seite 209-215 volume:33 year:1995 number:2 month:06 pages:209-215 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Finite Lattice Free Lattice Staircase Distributivity |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Algebra universalis |
authorswithroles_txt_mv |
Reinhold, J. @@aut@@ |
publishDateDaySort_date |
1995-06-01T00:00:00Z |
hierarchy_top_id |
129291129 |
dewey-sort |
3510 |
id |
OLC2069281523 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069281523</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323100348.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1995 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01190933</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069281523</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01190933-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reinhold, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weak distributive laws and their role in free lattices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much stronger in the infinity case, entailing not only λ-continuity but staircase distributivity, a property that is inherited by sublattices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staircase Distributivity</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebra universalis</subfield><subfield code="d">Birkhäuser-Verlag, 1971</subfield><subfield code="g">33(1995), 2 vom: Juni, Seite 209-215</subfield><subfield code="w">(DE-627)129291129</subfield><subfield code="w">(DE-600)120470-1</subfield><subfield code="w">(DE-576)014472449</subfield><subfield code="x">0002-5240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:209-215</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01190933</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">1995</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">209-215</subfield></datafield></record></collection>
|
author |
Reinhold, J. |
spellingShingle |
Reinhold, J. ddc 510 ssgn 17,1 misc Finite Lattice misc Free Lattice misc Staircase Distributivity Weak distributive laws and their role in free lattices |
authorStr |
Reinhold, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129291129 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0002-5240 |
topic_title |
510 VZ 17,1 ssgn Weak distributive laws and their role in free lattices Finite Lattice Free Lattice Staircase Distributivity |
topic |
ddc 510 ssgn 17,1 misc Finite Lattice misc Free Lattice misc Staircase Distributivity |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Finite Lattice misc Free Lattice misc Staircase Distributivity |
topic_browse |
ddc 510 ssgn 17,1 misc Finite Lattice misc Free Lattice misc Staircase Distributivity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algebra universalis |
hierarchy_parent_id |
129291129 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Algebra universalis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129291129 (DE-600)120470-1 (DE-576)014472449 |
title |
Weak distributive laws and their role in free lattices |
ctrlnum |
(DE-627)OLC2069281523 (DE-He213)BF01190933-p |
title_full |
Weak distributive laws and their role in free lattices |
author_sort |
Reinhold, J. |
journal |
Algebra universalis |
journalStr |
Algebra universalis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1995 |
contenttype_str_mv |
txt |
container_start_page |
209 |
author_browse |
Reinhold, J. |
container_volume |
33 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Reinhold, J. |
doi_str_mv |
10.1007/BF01190933 |
dewey-full |
510 |
title_sort |
weak distributive laws and their role in free lattices |
title_auth |
Weak distributive laws and their role in free lattices |
abstract |
Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much stronger in the infinity case, entailing not only λ-continuity but staircase distributivity, a property that is inherited by sublattices. © Birkhäuser Verlag 1995 |
abstractGer |
Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much stronger in the infinity case, entailing not only λ-continuity but staircase distributivity, a property that is inherited by sublattices. © Birkhäuser Verlag 1995 |
abstract_unstemmed |
Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much stronger in the infinity case, entailing not only λ-continuity but staircase distributivity, a property that is inherited by sublattices. © Birkhäuser Verlag 1995 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 |
container_issue |
2 |
title_short |
Weak distributive laws and their role in free lattices |
url |
https://doi.org/10.1007/BF01190933 |
remote_bool |
false |
ppnlink |
129291129 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01190933 |
up_date |
2024-07-03T21:41:19.603Z |
_version_ |
1803595682523643904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069281523</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323100348.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1995 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01190933</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069281523</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01190933-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reinhold, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weak distributive laws and their role in free lattices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this note we use concepts from Marcel Erné's work on weak distributive laws to show that free lattices have a property called *-distributivity. While this property, which is preserved by bounded epimorphisms, is equivalent to a λ-semidistributivity for finite lattices, it is much stronger in the infinity case, entailing not only λ-continuity but staircase distributivity, a property that is inherited by sublattices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staircase Distributivity</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebra universalis</subfield><subfield code="d">Birkhäuser-Verlag, 1971</subfield><subfield code="g">33(1995), 2 vom: Juni, Seite 209-215</subfield><subfield code="w">(DE-627)129291129</subfield><subfield code="w">(DE-600)120470-1</subfield><subfield code="w">(DE-576)014472449</subfield><subfield code="x">0002-5240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:209-215</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01190933</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">1995</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">209-215</subfield></datafield></record></collection>
|
score |
7.401292 |