Characterisation of some sparse binary sequential arrays
Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequent...
Ausführliche Beschreibung
Autor*in: |
Praeger, Cheryl E. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1983 |
---|
Anmerkung: |
© Birkhäuser Verlag 1983 |
---|
Übergeordnetes Werk: |
Enthalten in: Aequationes mathematicae - Birkhäuser-Verlag, 1968, 26(1983), 1 vom: Dez., Seite 54-58 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:1983 ; number:1 ; month:12 ; pages:54-58 |
Links: |
---|
DOI / URN: |
10.1007/BF02189664 |
---|
Katalog-ID: |
OLC2069356116 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2069356116 | ||
003 | DE-627 | ||
005 | 20230323095240.0 | ||
007 | tu | ||
008 | 200819s1983 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02189664 |2 doi | |
035 | |a (DE-627)OLC2069356116 | ||
035 | |a (DE-He213)BF02189664-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Praeger, Cheryl E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Characterisation of some sparse binary sequential arrays |
264 | 1 | |c 1983 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag 1983 | ||
520 | |a Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequential arrays with two ones per period, and those with three consecutive ones per period. | ||
700 | 1 | |a Street, Anne Penfold |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Aequationes mathematicae |d Birkhäuser-Verlag, 1968 |g 26(1983), 1 vom: Dez., Seite 54-58 |w (DE-627)129512788 |w (DE-600)210534-2 |w (DE-576)014920638 |x 0001-9054 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:1983 |g number:1 |g month:12 |g pages:54-58 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02189664 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 26 |j 1983 |e 1 |c 12 |h 54-58 |
author_variant |
c e p ce cep a p s ap aps |
---|---|
matchkey_str |
article:00019054:1983----::hrceiainfoepreiaye |
hierarchy_sort_str |
1983 |
publishDate |
1983 |
allfields |
10.1007/BF02189664 doi (DE-627)OLC2069356116 (DE-He213)BF02189664-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Praeger, Cheryl E. verfasserin aut Characterisation of some sparse binary sequential arrays 1983 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1983 Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequential arrays with two ones per period, and those with three consecutive ones per period. Street, Anne Penfold aut Enthalten in Aequationes mathematicae Birkhäuser-Verlag, 1968 26(1983), 1 vom: Dez., Seite 54-58 (DE-627)129512788 (DE-600)210534-2 (DE-576)014920638 0001-9054 nnns volume:26 year:1983 number:1 month:12 pages:54-58 https://doi.org/10.1007/BF02189664 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 26 1983 1 12 54-58 |
spelling |
10.1007/BF02189664 doi (DE-627)OLC2069356116 (DE-He213)BF02189664-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Praeger, Cheryl E. verfasserin aut Characterisation of some sparse binary sequential arrays 1983 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1983 Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequential arrays with two ones per period, and those with three consecutive ones per period. Street, Anne Penfold aut Enthalten in Aequationes mathematicae Birkhäuser-Verlag, 1968 26(1983), 1 vom: Dez., Seite 54-58 (DE-627)129512788 (DE-600)210534-2 (DE-576)014920638 0001-9054 nnns volume:26 year:1983 number:1 month:12 pages:54-58 https://doi.org/10.1007/BF02189664 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 26 1983 1 12 54-58 |
allfields_unstemmed |
10.1007/BF02189664 doi (DE-627)OLC2069356116 (DE-He213)BF02189664-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Praeger, Cheryl E. verfasserin aut Characterisation of some sparse binary sequential arrays 1983 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1983 Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequential arrays with two ones per period, and those with three consecutive ones per period. Street, Anne Penfold aut Enthalten in Aequationes mathematicae Birkhäuser-Verlag, 1968 26(1983), 1 vom: Dez., Seite 54-58 (DE-627)129512788 (DE-600)210534-2 (DE-576)014920638 0001-9054 nnns volume:26 year:1983 number:1 month:12 pages:54-58 https://doi.org/10.1007/BF02189664 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 26 1983 1 12 54-58 |
allfieldsGer |
10.1007/BF02189664 doi (DE-627)OLC2069356116 (DE-He213)BF02189664-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Praeger, Cheryl E. verfasserin aut Characterisation of some sparse binary sequential arrays 1983 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1983 Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequential arrays with two ones per period, and those with three consecutive ones per period. Street, Anne Penfold aut Enthalten in Aequationes mathematicae Birkhäuser-Verlag, 1968 26(1983), 1 vom: Dez., Seite 54-58 (DE-627)129512788 (DE-600)210534-2 (DE-576)014920638 0001-9054 nnns volume:26 year:1983 number:1 month:12 pages:54-58 https://doi.org/10.1007/BF02189664 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 26 1983 1 12 54-58 |
allfieldsSound |
10.1007/BF02189664 doi (DE-627)OLC2069356116 (DE-He213)BF02189664-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Praeger, Cheryl E. verfasserin aut Characterisation of some sparse binary sequential arrays 1983 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1983 Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequential arrays with two ones per period, and those with three consecutive ones per period. Street, Anne Penfold aut Enthalten in Aequationes mathematicae Birkhäuser-Verlag, 1968 26(1983), 1 vom: Dez., Seite 54-58 (DE-627)129512788 (DE-600)210534-2 (DE-576)014920638 0001-9054 nnns volume:26 year:1983 number:1 month:12 pages:54-58 https://doi.org/10.1007/BF02189664 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 26 1983 1 12 54-58 |
language |
English |
source |
Enthalten in Aequationes mathematicae 26(1983), 1 vom: Dez., Seite 54-58 volume:26 year:1983 number:1 month:12 pages:54-58 |
sourceStr |
Enthalten in Aequationes mathematicae 26(1983), 1 vom: Dez., Seite 54-58 volume:26 year:1983 number:1 month:12 pages:54-58 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Aequationes mathematicae |
authorswithroles_txt_mv |
Praeger, Cheryl E. @@aut@@ Street, Anne Penfold @@aut@@ |
publishDateDaySort_date |
1983-12-01T00:00:00Z |
hierarchy_top_id |
129512788 |
dewey-sort |
3510 |
id |
OLC2069356116 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069356116</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323095240.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1983 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02189664</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069356116</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02189664-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Praeger, Cheryl E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterisation of some sparse binary sequential arrays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1983</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1983</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequential arrays with two ones per period, and those with three consecutive ones per period.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Street, Anne Penfold</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Aequationes mathematicae</subfield><subfield code="d">Birkhäuser-Verlag, 1968</subfield><subfield code="g">26(1983), 1 vom: Dez., Seite 54-58</subfield><subfield code="w">(DE-627)129512788</subfield><subfield code="w">(DE-600)210534-2</subfield><subfield code="w">(DE-576)014920638</subfield><subfield code="x">0001-9054</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:1983</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:54-58</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02189664</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">1983</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">54-58</subfield></datafield></record></collection>
|
author |
Praeger, Cheryl E. |
spellingShingle |
Praeger, Cheryl E. ddc 510 ssgn 17,1 Characterisation of some sparse binary sequential arrays |
authorStr |
Praeger, Cheryl E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129512788 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-9054 |
topic_title |
510 VZ 17,1 ssgn Characterisation of some sparse binary sequential arrays |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Aequationes mathematicae |
hierarchy_parent_id |
129512788 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Aequationes mathematicae |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129512788 (DE-600)210534-2 (DE-576)014920638 |
title |
Characterisation of some sparse binary sequential arrays |
ctrlnum |
(DE-627)OLC2069356116 (DE-He213)BF02189664-p |
title_full |
Characterisation of some sparse binary sequential arrays |
author_sort |
Praeger, Cheryl E. |
journal |
Aequationes mathematicae |
journalStr |
Aequationes mathematicae |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1983 |
contenttype_str_mv |
txt |
container_start_page |
54 |
author_browse |
Praeger, Cheryl E. Street, Anne Penfold |
container_volume |
26 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Praeger, Cheryl E. |
doi_str_mv |
10.1007/BF02189664 |
dewey-full |
510 |
title_sort |
characterisation of some sparse binary sequential arrays |
title_auth |
Characterisation of some sparse binary sequential arrays |
abstract |
Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequential arrays with two ones per period, and those with three consecutive ones per period. © Birkhäuser Verlag 1983 |
abstractGer |
Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequential arrays with two ones per period, and those with three consecutive ones per period. © Birkhäuser Verlag 1983 |
abstract_unstemmed |
Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequential arrays with two ones per period, and those with three consecutive ones per period. © Birkhäuser Verlag 1983 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Characterisation of some sparse binary sequential arrays |
url |
https://doi.org/10.1007/BF02189664 |
remote_bool |
false |
author2 |
Street, Anne Penfold |
author2Str |
Street, Anne Penfold |
ppnlink |
129512788 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02189664 |
up_date |
2024-07-03T21:55:44.636Z |
_version_ |
1803596589577535488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069356116</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323095240.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1983 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02189664</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069356116</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02189664-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Praeger, Cheryl E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterisation of some sparse binary sequential arrays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1983</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1983</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A periodic binary array is said to besequential if and only if every line of the array is occupied by a given periodic binary sequence or by some cyclic shift or reversal of this sequence. This paper extends earlier results for arrays built on the square grid, characterising further sequential arrays with two ones per period, and those with three consecutive ones per period.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Street, Anne Penfold</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Aequationes mathematicae</subfield><subfield code="d">Birkhäuser-Verlag, 1968</subfield><subfield code="g">26(1983), 1 vom: Dez., Seite 54-58</subfield><subfield code="w">(DE-627)129512788</subfield><subfield code="w">(DE-600)210534-2</subfield><subfield code="w">(DE-576)014920638</subfield><subfield code="x">0001-9054</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:1983</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:54-58</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02189664</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">1983</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">54-58</subfield></datafield></record></collection>
|
score |
7.401121 |