Linear complexity algorithms for semiseparable matrices
Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution...
Ausführliche Beschreibung
Autor*in: |
Gohberg, I. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1985 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Birkhäuser Verlag 1985 |
---|
Übergeordnetes Werk: |
Enthalten in: Integral equations and operator theory - Birkhäuser-Verlag, 1978, 8(1985), 6 vom: Nov., Seite 780-804 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:1985 ; number:6 ; month:11 ; pages:780-804 |
Links: |
---|
DOI / URN: |
10.1007/BF01213791 |
---|
Katalog-ID: |
OLC2069379450 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2069379450 | ||
003 | DE-627 | ||
005 | 20230323110502.0 | ||
007 | tu | ||
008 | 200819s1985 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01213791 |2 doi | |
035 | |a (DE-627)OLC2069379450 | ||
035 | |a (DE-He213)BF01213791-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 004 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Gohberg, I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Linear complexity algorithms for semiseparable matrices |
264 | 1 | |c 1985 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag 1985 | ||
520 | |a Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution can be efficiently update is treated separately. | ||
650 | 4 | |a Linear System | |
650 | 4 | |a Coefficient Matrix | |
650 | 4 | |a Linear Complexity | |
650 | 4 | |a Complexity Algorithm | |
650 | 4 | |a Semiseparable Matrice | |
700 | 1 | |a Kailath, T. |4 aut | |
700 | 1 | |a Koltracht, I. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Integral equations and operator theory |d Birkhäuser-Verlag, 1978 |g 8(1985), 6 vom: Nov., Seite 780-804 |w (DE-627)129859184 |w (DE-600)282475-9 |w (DE-576)015166651 |x 0378-620X |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:1985 |g number:6 |g month:11 |g pages:780-804 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01213791 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
951 | |a AR | ||
952 | |d 8 |j 1985 |e 6 |c 11 |h 780-804 |
author_variant |
i g ig t k tk i k ik |
---|---|
matchkey_str |
article:0378620X:1985----::ieropeiyloihsosmsp |
hierarchy_sort_str |
1985 |
publishDate |
1985 |
allfields |
10.1007/BF01213791 doi (DE-627)OLC2069379450 (DE-He213)BF01213791-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Gohberg, I. verfasserin aut Linear complexity algorithms for semiseparable matrices 1985 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1985 Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution can be efficiently update is treated separately. Linear System Coefficient Matrix Linear Complexity Complexity Algorithm Semiseparable Matrice Kailath, T. aut Koltracht, I. aut Enthalten in Integral equations and operator theory Birkhäuser-Verlag, 1978 8(1985), 6 vom: Nov., Seite 780-804 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:8 year:1985 number:6 month:11 pages:780-804 https://doi.org/10.1007/BF01213791 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 AR 8 1985 6 11 780-804 |
spelling |
10.1007/BF01213791 doi (DE-627)OLC2069379450 (DE-He213)BF01213791-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Gohberg, I. verfasserin aut Linear complexity algorithms for semiseparable matrices 1985 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1985 Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution can be efficiently update is treated separately. Linear System Coefficient Matrix Linear Complexity Complexity Algorithm Semiseparable Matrice Kailath, T. aut Koltracht, I. aut Enthalten in Integral equations and operator theory Birkhäuser-Verlag, 1978 8(1985), 6 vom: Nov., Seite 780-804 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:8 year:1985 number:6 month:11 pages:780-804 https://doi.org/10.1007/BF01213791 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 AR 8 1985 6 11 780-804 |
allfields_unstemmed |
10.1007/BF01213791 doi (DE-627)OLC2069379450 (DE-He213)BF01213791-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Gohberg, I. verfasserin aut Linear complexity algorithms for semiseparable matrices 1985 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1985 Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution can be efficiently update is treated separately. Linear System Coefficient Matrix Linear Complexity Complexity Algorithm Semiseparable Matrice Kailath, T. aut Koltracht, I. aut Enthalten in Integral equations and operator theory Birkhäuser-Verlag, 1978 8(1985), 6 vom: Nov., Seite 780-804 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:8 year:1985 number:6 month:11 pages:780-804 https://doi.org/10.1007/BF01213791 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 AR 8 1985 6 11 780-804 |
allfieldsGer |
10.1007/BF01213791 doi (DE-627)OLC2069379450 (DE-He213)BF01213791-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Gohberg, I. verfasserin aut Linear complexity algorithms for semiseparable matrices 1985 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1985 Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution can be efficiently update is treated separately. Linear System Coefficient Matrix Linear Complexity Complexity Algorithm Semiseparable Matrice Kailath, T. aut Koltracht, I. aut Enthalten in Integral equations and operator theory Birkhäuser-Verlag, 1978 8(1985), 6 vom: Nov., Seite 780-804 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:8 year:1985 number:6 month:11 pages:780-804 https://doi.org/10.1007/BF01213791 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 AR 8 1985 6 11 780-804 |
allfieldsSound |
10.1007/BF01213791 doi (DE-627)OLC2069379450 (DE-He213)BF01213791-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Gohberg, I. verfasserin aut Linear complexity algorithms for semiseparable matrices 1985 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1985 Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution can be efficiently update is treated separately. Linear System Coefficient Matrix Linear Complexity Complexity Algorithm Semiseparable Matrice Kailath, T. aut Koltracht, I. aut Enthalten in Integral equations and operator theory Birkhäuser-Verlag, 1978 8(1985), 6 vom: Nov., Seite 780-804 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:8 year:1985 number:6 month:11 pages:780-804 https://doi.org/10.1007/BF01213791 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 AR 8 1985 6 11 780-804 |
language |
English |
source |
Enthalten in Integral equations and operator theory 8(1985), 6 vom: Nov., Seite 780-804 volume:8 year:1985 number:6 month:11 pages:780-804 |
sourceStr |
Enthalten in Integral equations and operator theory 8(1985), 6 vom: Nov., Seite 780-804 volume:8 year:1985 number:6 month:11 pages:780-804 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Linear System Coefficient Matrix Linear Complexity Complexity Algorithm Semiseparable Matrice |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Integral equations and operator theory |
authorswithroles_txt_mv |
Gohberg, I. @@aut@@ Kailath, T. @@aut@@ Koltracht, I. @@aut@@ |
publishDateDaySort_date |
1985-11-01T00:00:00Z |
hierarchy_top_id |
129859184 |
dewey-sort |
3510 |
id |
OLC2069379450 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069379450</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323110502.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1985 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01213791</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069379450</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01213791-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gohberg, I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear complexity algorithms for semiseparable matrices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1985</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1985</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution can be efficiently update is treated separately.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coefficient Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiseparable Matrice</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kailath, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koltracht, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Integral equations and operator theory</subfield><subfield code="d">Birkhäuser-Verlag, 1978</subfield><subfield code="g">8(1985), 6 vom: Nov., Seite 780-804</subfield><subfield code="w">(DE-627)129859184</subfield><subfield code="w">(DE-600)282475-9</subfield><subfield code="w">(DE-576)015166651</subfield><subfield code="x">0378-620X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:1985</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:780-804</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01213791</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">1985</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">780-804</subfield></datafield></record></collection>
|
author |
Gohberg, I. |
spellingShingle |
Gohberg, I. ddc 510 ssgn 17,1 misc Linear System misc Coefficient Matrix misc Linear Complexity misc Complexity Algorithm misc Semiseparable Matrice Linear complexity algorithms for semiseparable matrices |
authorStr |
Gohberg, I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129859184 |
format |
Article |
dewey-ones |
510 - Mathematics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0378-620X |
topic_title |
510 004 VZ 17,1 ssgn Linear complexity algorithms for semiseparable matrices Linear System Coefficient Matrix Linear Complexity Complexity Algorithm Semiseparable Matrice |
topic |
ddc 510 ssgn 17,1 misc Linear System misc Coefficient Matrix misc Linear Complexity misc Complexity Algorithm misc Semiseparable Matrice |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Linear System misc Coefficient Matrix misc Linear Complexity misc Complexity Algorithm misc Semiseparable Matrice |
topic_browse |
ddc 510 ssgn 17,1 misc Linear System misc Coefficient Matrix misc Linear Complexity misc Complexity Algorithm misc Semiseparable Matrice |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Integral equations and operator theory |
hierarchy_parent_id |
129859184 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Integral equations and operator theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 |
title |
Linear complexity algorithms for semiseparable matrices |
ctrlnum |
(DE-627)OLC2069379450 (DE-He213)BF01213791-p |
title_full |
Linear complexity algorithms for semiseparable matrices |
author_sort |
Gohberg, I. |
journal |
Integral equations and operator theory |
journalStr |
Integral equations and operator theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
1985 |
contenttype_str_mv |
txt |
container_start_page |
780 |
author_browse |
Gohberg, I. Kailath, T. Koltracht, I. |
container_volume |
8 |
class |
510 004 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Gohberg, I. |
doi_str_mv |
10.1007/BF01213791 |
dewey-full |
510 004 |
title_sort |
linear complexity algorithms for semiseparable matrices |
title_auth |
Linear complexity algorithms for semiseparable matrices |
abstract |
Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution can be efficiently update is treated separately. © Birkhäuser Verlag 1985 |
abstractGer |
Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution can be efficiently update is treated separately. © Birkhäuser Verlag 1985 |
abstract_unstemmed |
Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution can be efficiently update is treated separately. © Birkhäuser Verlag 1985 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 |
container_issue |
6 |
title_short |
Linear complexity algorithms for semiseparable matrices |
url |
https://doi.org/10.1007/BF01213791 |
remote_bool |
false |
author2 |
Kailath, T. Koltracht, I. |
author2Str |
Kailath, T. Koltracht, I. |
ppnlink |
129859184 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01213791 |
up_date |
2024-07-03T21:59:50.940Z |
_version_ |
1803596847850192896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069379450</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323110502.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1985 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01213791</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069379450</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01213791-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gohberg, I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear complexity algorithms for semiseparable matrices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1985</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1985</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Linear complexity algorithms are derived for the solution of a linear system of equations with the coefficient matrix represented as a sum of diagonal and semiseparable matrices. LDU-factorization algorithms for such matrices and their inverses are also given. The case in which the solution can be efficiently update is treated separately.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coefficient Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiseparable Matrice</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kailath, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koltracht, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Integral equations and operator theory</subfield><subfield code="d">Birkhäuser-Verlag, 1978</subfield><subfield code="g">8(1985), 6 vom: Nov., Seite 780-804</subfield><subfield code="w">(DE-627)129859184</subfield><subfield code="w">(DE-600)282475-9</subfield><subfield code="w">(DE-576)015166651</subfield><subfield code="x">0378-620X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:1985</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:780-804</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01213791</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">1985</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">780-804</subfield></datafield></record></collection>
|
score |
7.4025946 |