Error bounds and parameter choice strategies for simplified regularization in Hilbert scales
Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order wit...
Ausführliche Beschreibung
Autor*in: |
George, Santhosh [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1997 |
---|
Anmerkung: |
© Birkhäuser Verlag 1997 |
---|
Übergeordnetes Werk: |
Enthalten in: Integral equations and operator theory - Birkhäuser-Verlag, 1978, 29(1997), 2 vom: Juni, Seite 231-242 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:1997 ; number:2 ; month:06 ; pages:231-242 |
Links: |
---|
DOI / URN: |
10.1007/BF01191432 |
---|
Katalog-ID: |
OLC2069386546 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2069386546 | ||
003 | DE-627 | ||
005 | 20230323110541.0 | ||
007 | tu | ||
008 | 200819s1997 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01191432 |2 doi | |
035 | |a (DE-627)OLC2069386546 | ||
035 | |a (DE-He213)BF01191432-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 004 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a George, Santhosh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Error bounds and parameter choice strategies for simplified regularization in Hilbert scales |
264 | 1 | |c 1997 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag 1997 | ||
520 | |a Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order with respect to certain natural assumptions on the ill-posedness of the equation. | ||
700 | 1 | |a Thamban nair, M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Integral equations and operator theory |d Birkhäuser-Verlag, 1978 |g 29(1997), 2 vom: Juni, Seite 231-242 |w (DE-627)129859184 |w (DE-600)282475-9 |w (DE-576)015166651 |x 0378-620X |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:1997 |g number:2 |g month:06 |g pages:231-242 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01191432 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4325 | ||
951 | |a AR | ||
952 | |d 29 |j 1997 |e 2 |c 06 |h 231-242 |
author_variant |
s g sg n m t nm nmt |
---|---|
matchkey_str |
article:0378620X:1997----::robudadaaeecocsrtgefripiideuai |
hierarchy_sort_str |
1997 |
publishDate |
1997 |
allfields |
10.1007/BF01191432 doi (DE-627)OLC2069386546 (DE-He213)BF01191432-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn George, Santhosh verfasserin aut Error bounds and parameter choice strategies for simplified regularization in Hilbert scales 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1997 Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order with respect to certain natural assumptions on the ill-posedness of the equation. Thamban nair, M. aut Enthalten in Integral equations and operator theory Birkhäuser-Verlag, 1978 29(1997), 2 vom: Juni, Seite 231-242 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:29 year:1997 number:2 month:06 pages:231-242 https://doi.org/10.1007/BF01191432 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4325 AR 29 1997 2 06 231-242 |
spelling |
10.1007/BF01191432 doi (DE-627)OLC2069386546 (DE-He213)BF01191432-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn George, Santhosh verfasserin aut Error bounds and parameter choice strategies for simplified regularization in Hilbert scales 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1997 Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order with respect to certain natural assumptions on the ill-posedness of the equation. Thamban nair, M. aut Enthalten in Integral equations and operator theory Birkhäuser-Verlag, 1978 29(1997), 2 vom: Juni, Seite 231-242 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:29 year:1997 number:2 month:06 pages:231-242 https://doi.org/10.1007/BF01191432 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4325 AR 29 1997 2 06 231-242 |
allfields_unstemmed |
10.1007/BF01191432 doi (DE-627)OLC2069386546 (DE-He213)BF01191432-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn George, Santhosh verfasserin aut Error bounds and parameter choice strategies for simplified regularization in Hilbert scales 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1997 Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order with respect to certain natural assumptions on the ill-posedness of the equation. Thamban nair, M. aut Enthalten in Integral equations and operator theory Birkhäuser-Verlag, 1978 29(1997), 2 vom: Juni, Seite 231-242 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:29 year:1997 number:2 month:06 pages:231-242 https://doi.org/10.1007/BF01191432 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4325 AR 29 1997 2 06 231-242 |
allfieldsGer |
10.1007/BF01191432 doi (DE-627)OLC2069386546 (DE-He213)BF01191432-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn George, Santhosh verfasserin aut Error bounds and parameter choice strategies for simplified regularization in Hilbert scales 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1997 Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order with respect to certain natural assumptions on the ill-posedness of the equation. Thamban nair, M. aut Enthalten in Integral equations and operator theory Birkhäuser-Verlag, 1978 29(1997), 2 vom: Juni, Seite 231-242 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:29 year:1997 number:2 month:06 pages:231-242 https://doi.org/10.1007/BF01191432 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4325 AR 29 1997 2 06 231-242 |
allfieldsSound |
10.1007/BF01191432 doi (DE-627)OLC2069386546 (DE-He213)BF01191432-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn George, Santhosh verfasserin aut Error bounds and parameter choice strategies for simplified regularization in Hilbert scales 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1997 Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order with respect to certain natural assumptions on the ill-posedness of the equation. Thamban nair, M. aut Enthalten in Integral equations and operator theory Birkhäuser-Verlag, 1978 29(1997), 2 vom: Juni, Seite 231-242 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:29 year:1997 number:2 month:06 pages:231-242 https://doi.org/10.1007/BF01191432 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4325 AR 29 1997 2 06 231-242 |
language |
English |
source |
Enthalten in Integral equations and operator theory 29(1997), 2 vom: Juni, Seite 231-242 volume:29 year:1997 number:2 month:06 pages:231-242 |
sourceStr |
Enthalten in Integral equations and operator theory 29(1997), 2 vom: Juni, Seite 231-242 volume:29 year:1997 number:2 month:06 pages:231-242 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Integral equations and operator theory |
authorswithroles_txt_mv |
George, Santhosh @@aut@@ Thamban nair, M. @@aut@@ |
publishDateDaySort_date |
1997-06-01T00:00:00Z |
hierarchy_top_id |
129859184 |
dewey-sort |
3510 |
id |
OLC2069386546 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069386546</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323110541.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01191432</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069386546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01191432-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">George, Santhosh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Error bounds and parameter choice strategies for simplified regularization in Hilbert scales</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order with respect to certain natural assumptions on the ill-posedness of the equation.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thamban nair, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Integral equations and operator theory</subfield><subfield code="d">Birkhäuser-Verlag, 1978</subfield><subfield code="g">29(1997), 2 vom: Juni, Seite 231-242</subfield><subfield code="w">(DE-627)129859184</subfield><subfield code="w">(DE-600)282475-9</subfield><subfield code="w">(DE-576)015166651</subfield><subfield code="x">0378-620X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:231-242</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01191432</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">1997</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">231-242</subfield></datafield></record></collection>
|
author |
George, Santhosh |
spellingShingle |
George, Santhosh ddc 510 ssgn 17,1 Error bounds and parameter choice strategies for simplified regularization in Hilbert scales |
authorStr |
George, Santhosh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129859184 |
format |
Article |
dewey-ones |
510 - Mathematics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0378-620X |
topic_title |
510 004 VZ 17,1 ssgn Error bounds and parameter choice strategies for simplified regularization in Hilbert scales |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Integral equations and operator theory |
hierarchy_parent_id |
129859184 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Integral equations and operator theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 |
title |
Error bounds and parameter choice strategies for simplified regularization in Hilbert scales |
ctrlnum |
(DE-627)OLC2069386546 (DE-He213)BF01191432-p |
title_full |
Error bounds and parameter choice strategies for simplified regularization in Hilbert scales |
author_sort |
George, Santhosh |
journal |
Integral equations and operator theory |
journalStr |
Integral equations and operator theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
1997 |
contenttype_str_mv |
txt |
container_start_page |
231 |
author_browse |
George, Santhosh Thamban nair, M. |
container_volume |
29 |
class |
510 004 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
George, Santhosh |
doi_str_mv |
10.1007/BF01191432 |
dewey-full |
510 004 |
title_sort |
error bounds and parameter choice strategies for simplified regularization in hilbert scales |
title_auth |
Error bounds and parameter choice strategies for simplified regularization in Hilbert scales |
abstract |
Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order with respect to certain natural assumptions on the ill-posedness of the equation. © Birkhäuser Verlag 1997 |
abstractGer |
Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order with respect to certain natural assumptions on the ill-posedness of the equation. © Birkhäuser Verlag 1997 |
abstract_unstemmed |
Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order with respect to certain natural assumptions on the ill-posedness of the equation. © Birkhäuser Verlag 1997 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4325 |
container_issue |
2 |
title_short |
Error bounds and parameter choice strategies for simplified regularization in Hilbert scales |
url |
https://doi.org/10.1007/BF01191432 |
remote_bool |
false |
author2 |
Thamban nair, M. |
author2Str |
Thamban nair, M. |
ppnlink |
129859184 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01191432 |
up_date |
2024-07-03T22:01:11.656Z |
_version_ |
1803596932486004736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069386546</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323110541.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01191432</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069386546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01191432-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">George, Santhosh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Error bounds and parameter choice strategies for simplified regularization in Hilbert scales</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Simplified regularization in the setting of Hilbert scales has been considered for obtaining stable approximate solutions for ill-posed operator equations. The derived error estimates using an a posteriori as well as an a priori parameter choice strategy are shown to be of optimal order with respect to certain natural assumptions on the ill-posedness of the equation.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thamban nair, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Integral equations and operator theory</subfield><subfield code="d">Birkhäuser-Verlag, 1978</subfield><subfield code="g">29(1997), 2 vom: Juni, Seite 231-242</subfield><subfield code="w">(DE-627)129859184</subfield><subfield code="w">(DE-600)282475-9</subfield><subfield code="w">(DE-576)015166651</subfield><subfield code="x">0378-620X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:231-242</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01191432</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">1997</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">231-242</subfield></datafield></record></collection>
|
score |
7.4013557 |