Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators
Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and suff...
Ausführliche Beschreibung
Autor*in: |
Ay, Serdar [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer International Publishing 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Integral equations and operator theory - Springer International Publishing, 1978, 87(2017), 2 vom: Feb., Seite 263-307 |
---|---|
Übergeordnetes Werk: |
volume:87 ; year:2017 ; number:2 ; month:02 ; pages:263-307 |
Links: |
---|
DOI / URN: |
10.1007/s00020-017-2346-1 |
---|
Katalog-ID: |
OLC2069402460 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2069402460 | ||
003 | DE-627 | ||
005 | 20230323110844.0 | ||
007 | tu | ||
008 | 200819s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00020-017-2346-1 |2 doi | |
035 | |a (DE-627)OLC2069402460 | ||
035 | |a (DE-He213)s00020-017-2346-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 004 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Ay, Serdar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer International Publishing 2017 | ||
520 | |a Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and sufficient boundedness conditions in order for there to exist $$*$$-representations of the underlying $$*$$-semigroup on a VH-space linearisation, equivalently, on a reproducing kernel VH-space. We exhibit several situations when the latter boundedness condition is automatically fulfilled. For example, when specialising to the case of Hilbert modules over locally $$C^*$$-algebras, we show that both boundedness conditions are automatically fulfilled and, consequently, this general approach provides a rather direct proof of the general Stinespring–Kasparov type dilation theorem for completely positive maps on locally $$C^*$$-algebras and with values adjointable operators on Hilbert modules over locally $$C^*$$-algebras. | ||
650 | 4 | |a Ordered | |
650 | 4 | |a -space | |
650 | 4 | |a Admissible space | |
650 | 4 | |a VH-space | |
650 | 4 | |a Positive semidefinite kernel | |
650 | 4 | |a -semigroup | |
650 | 4 | |a Invariant kernel | |
650 | 4 | |a Linearisation | |
650 | 4 | |a Reproducing kernel | |
650 | 4 | |a -representation | |
650 | 4 | |a Locally | |
650 | 4 | |a -algebra | |
650 | 4 | |a Hilbert locally | |
650 | 4 | |a -module | |
650 | 4 | |a Completely positive map | |
700 | 1 | |a Gheondea, Aurelian |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Integral equations and operator theory |d Springer International Publishing, 1978 |g 87(2017), 2 vom: Feb., Seite 263-307 |w (DE-627)129859184 |w (DE-600)282475-9 |w (DE-576)015166651 |x 0378-620X |7 nnns |
773 | 1 | 8 | |g volume:87 |g year:2017 |g number:2 |g month:02 |g pages:263-307 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00020-017-2346-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 87 |j 2017 |e 2 |c 02 |h 263-307 |
author_variant |
s a sa a g ag |
---|---|
matchkey_str |
article:0378620X:2017----::ersnainovresmgopascaetivratenlwtvlecn |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s00020-017-2346-1 doi (DE-627)OLC2069402460 (DE-He213)s00020-017-2346-1-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Ay, Serdar verfasserin aut Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2017 Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and sufficient boundedness conditions in order for there to exist $$*$$-representations of the underlying $$*$$-semigroup on a VH-space linearisation, equivalently, on a reproducing kernel VH-space. We exhibit several situations when the latter boundedness condition is automatically fulfilled. For example, when specialising to the case of Hilbert modules over locally $$C^*$$-algebras, we show that both boundedness conditions are automatically fulfilled and, consequently, this general approach provides a rather direct proof of the general Stinespring–Kasparov type dilation theorem for completely positive maps on locally $$C^*$$-algebras and with values adjointable operators on Hilbert modules over locally $$C^*$$-algebras. Ordered -space Admissible space VH-space Positive semidefinite kernel -semigroup Invariant kernel Linearisation Reproducing kernel -representation Locally -algebra Hilbert locally -module Completely positive map Gheondea, Aurelian aut Enthalten in Integral equations and operator theory Springer International Publishing, 1978 87(2017), 2 vom: Feb., Seite 263-307 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:87 year:2017 number:2 month:02 pages:263-307 https://doi.org/10.1007/s00020-017-2346-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4318 AR 87 2017 2 02 263-307 |
spelling |
10.1007/s00020-017-2346-1 doi (DE-627)OLC2069402460 (DE-He213)s00020-017-2346-1-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Ay, Serdar verfasserin aut Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2017 Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and sufficient boundedness conditions in order for there to exist $$*$$-representations of the underlying $$*$$-semigroup on a VH-space linearisation, equivalently, on a reproducing kernel VH-space. We exhibit several situations when the latter boundedness condition is automatically fulfilled. For example, when specialising to the case of Hilbert modules over locally $$C^*$$-algebras, we show that both boundedness conditions are automatically fulfilled and, consequently, this general approach provides a rather direct proof of the general Stinespring–Kasparov type dilation theorem for completely positive maps on locally $$C^*$$-algebras and with values adjointable operators on Hilbert modules over locally $$C^*$$-algebras. Ordered -space Admissible space VH-space Positive semidefinite kernel -semigroup Invariant kernel Linearisation Reproducing kernel -representation Locally -algebra Hilbert locally -module Completely positive map Gheondea, Aurelian aut Enthalten in Integral equations and operator theory Springer International Publishing, 1978 87(2017), 2 vom: Feb., Seite 263-307 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:87 year:2017 number:2 month:02 pages:263-307 https://doi.org/10.1007/s00020-017-2346-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4318 AR 87 2017 2 02 263-307 |
allfields_unstemmed |
10.1007/s00020-017-2346-1 doi (DE-627)OLC2069402460 (DE-He213)s00020-017-2346-1-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Ay, Serdar verfasserin aut Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2017 Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and sufficient boundedness conditions in order for there to exist $$*$$-representations of the underlying $$*$$-semigroup on a VH-space linearisation, equivalently, on a reproducing kernel VH-space. We exhibit several situations when the latter boundedness condition is automatically fulfilled. For example, when specialising to the case of Hilbert modules over locally $$C^*$$-algebras, we show that both boundedness conditions are automatically fulfilled and, consequently, this general approach provides a rather direct proof of the general Stinespring–Kasparov type dilation theorem for completely positive maps on locally $$C^*$$-algebras and with values adjointable operators on Hilbert modules over locally $$C^*$$-algebras. Ordered -space Admissible space VH-space Positive semidefinite kernel -semigroup Invariant kernel Linearisation Reproducing kernel -representation Locally -algebra Hilbert locally -module Completely positive map Gheondea, Aurelian aut Enthalten in Integral equations and operator theory Springer International Publishing, 1978 87(2017), 2 vom: Feb., Seite 263-307 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:87 year:2017 number:2 month:02 pages:263-307 https://doi.org/10.1007/s00020-017-2346-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4318 AR 87 2017 2 02 263-307 |
allfieldsGer |
10.1007/s00020-017-2346-1 doi (DE-627)OLC2069402460 (DE-He213)s00020-017-2346-1-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Ay, Serdar verfasserin aut Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2017 Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and sufficient boundedness conditions in order for there to exist $$*$$-representations of the underlying $$*$$-semigroup on a VH-space linearisation, equivalently, on a reproducing kernel VH-space. We exhibit several situations when the latter boundedness condition is automatically fulfilled. For example, when specialising to the case of Hilbert modules over locally $$C^*$$-algebras, we show that both boundedness conditions are automatically fulfilled and, consequently, this general approach provides a rather direct proof of the general Stinespring–Kasparov type dilation theorem for completely positive maps on locally $$C^*$$-algebras and with values adjointable operators on Hilbert modules over locally $$C^*$$-algebras. Ordered -space Admissible space VH-space Positive semidefinite kernel -semigroup Invariant kernel Linearisation Reproducing kernel -representation Locally -algebra Hilbert locally -module Completely positive map Gheondea, Aurelian aut Enthalten in Integral equations and operator theory Springer International Publishing, 1978 87(2017), 2 vom: Feb., Seite 263-307 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:87 year:2017 number:2 month:02 pages:263-307 https://doi.org/10.1007/s00020-017-2346-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4318 AR 87 2017 2 02 263-307 |
allfieldsSound |
10.1007/s00020-017-2346-1 doi (DE-627)OLC2069402460 (DE-He213)s00020-017-2346-1-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Ay, Serdar verfasserin aut Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2017 Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and sufficient boundedness conditions in order for there to exist $$*$$-representations of the underlying $$*$$-semigroup on a VH-space linearisation, equivalently, on a reproducing kernel VH-space. We exhibit several situations when the latter boundedness condition is automatically fulfilled. For example, when specialising to the case of Hilbert modules over locally $$C^*$$-algebras, we show that both boundedness conditions are automatically fulfilled and, consequently, this general approach provides a rather direct proof of the general Stinespring–Kasparov type dilation theorem for completely positive maps on locally $$C^*$$-algebras and with values adjointable operators on Hilbert modules over locally $$C^*$$-algebras. Ordered -space Admissible space VH-space Positive semidefinite kernel -semigroup Invariant kernel Linearisation Reproducing kernel -representation Locally -algebra Hilbert locally -module Completely positive map Gheondea, Aurelian aut Enthalten in Integral equations and operator theory Springer International Publishing, 1978 87(2017), 2 vom: Feb., Seite 263-307 (DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 0378-620X nnns volume:87 year:2017 number:2 month:02 pages:263-307 https://doi.org/10.1007/s00020-017-2346-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4318 AR 87 2017 2 02 263-307 |
language |
English |
source |
Enthalten in Integral equations and operator theory 87(2017), 2 vom: Feb., Seite 263-307 volume:87 year:2017 number:2 month:02 pages:263-307 |
sourceStr |
Enthalten in Integral equations and operator theory 87(2017), 2 vom: Feb., Seite 263-307 volume:87 year:2017 number:2 month:02 pages:263-307 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ordered -space Admissible space VH-space Positive semidefinite kernel -semigroup Invariant kernel Linearisation Reproducing kernel -representation Locally -algebra Hilbert locally -module Completely positive map |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Integral equations and operator theory |
authorswithroles_txt_mv |
Ay, Serdar @@aut@@ Gheondea, Aurelian @@aut@@ |
publishDateDaySort_date |
2017-02-01T00:00:00Z |
hierarchy_top_id |
129859184 |
dewey-sort |
3510 |
id |
OLC2069402460 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069402460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323110844.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00020-017-2346-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069402460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00020-017-2346-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ay, Serdar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and sufficient boundedness conditions in order for there to exist $$*$$-representations of the underlying $$*$$-semigroup on a VH-space linearisation, equivalently, on a reproducing kernel VH-space. We exhibit several situations when the latter boundedness condition is automatically fulfilled. For example, when specialising to the case of Hilbert modules over locally $$C^*$$-algebras, we show that both boundedness conditions are automatically fulfilled and, consequently, this general approach provides a rather direct proof of the general Stinespring–Kasparov type dilation theorem for completely positive maps on locally $$C^*$$-algebras and with values adjointable operators on Hilbert modules over locally $$C^*$$-algebras.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordered</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Admissible space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VH-space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive semidefinite kernel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-semigroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant kernel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linearisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reproducing kernel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Locally</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert locally</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Completely positive map</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gheondea, Aurelian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Integral equations and operator theory</subfield><subfield code="d">Springer International Publishing, 1978</subfield><subfield code="g">87(2017), 2 vom: Feb., Seite 263-307</subfield><subfield code="w">(DE-627)129859184</subfield><subfield code="w">(DE-600)282475-9</subfield><subfield code="w">(DE-576)015166651</subfield><subfield code="x">0378-620X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:87</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:263-307</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00020-017-2346-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">87</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="c">02</subfield><subfield code="h">263-307</subfield></datafield></record></collection>
|
author |
Ay, Serdar |
spellingShingle |
Ay, Serdar ddc 510 ssgn 17,1 misc Ordered misc -space misc Admissible space misc VH-space misc Positive semidefinite kernel misc -semigroup misc Invariant kernel misc Linearisation misc Reproducing kernel misc -representation misc Locally misc -algebra misc Hilbert locally misc -module misc Completely positive map Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators |
authorStr |
Ay, Serdar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129859184 |
format |
Article |
dewey-ones |
510 - Mathematics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0378-620X |
topic_title |
510 004 VZ 17,1 ssgn Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators Ordered -space Admissible space VH-space Positive semidefinite kernel -semigroup Invariant kernel Linearisation Reproducing kernel -representation Locally -algebra Hilbert locally -module Completely positive map |
topic |
ddc 510 ssgn 17,1 misc Ordered misc -space misc Admissible space misc VH-space misc Positive semidefinite kernel misc -semigroup misc Invariant kernel misc Linearisation misc Reproducing kernel misc -representation misc Locally misc -algebra misc Hilbert locally misc -module misc Completely positive map |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Ordered misc -space misc Admissible space misc VH-space misc Positive semidefinite kernel misc -semigroup misc Invariant kernel misc Linearisation misc Reproducing kernel misc -representation misc Locally misc -algebra misc Hilbert locally misc -module misc Completely positive map |
topic_browse |
ddc 510 ssgn 17,1 misc Ordered misc -space misc Admissible space misc VH-space misc Positive semidefinite kernel misc -semigroup misc Invariant kernel misc Linearisation misc Reproducing kernel misc -representation misc Locally misc -algebra misc Hilbert locally misc -module misc Completely positive map |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Integral equations and operator theory |
hierarchy_parent_id |
129859184 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Integral equations and operator theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129859184 (DE-600)282475-9 (DE-576)015166651 |
title |
Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators |
ctrlnum |
(DE-627)OLC2069402460 (DE-He213)s00020-017-2346-1-p |
title_full |
Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators |
author_sort |
Ay, Serdar |
journal |
Integral equations and operator theory |
journalStr |
Integral equations and operator theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
263 |
author_browse |
Ay, Serdar Gheondea, Aurelian |
container_volume |
87 |
class |
510 004 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Ay, Serdar |
doi_str_mv |
10.1007/s00020-017-2346-1 |
dewey-full |
510 004 |
title_sort |
representations of $$\varvec{*}$$-semigroups associated to invariant kernels with values continuously adjointable operators |
title_auth |
Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators |
abstract |
Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and sufficient boundedness conditions in order for there to exist $$*$$-representations of the underlying $$*$$-semigroup on a VH-space linearisation, equivalently, on a reproducing kernel VH-space. We exhibit several situations when the latter boundedness condition is automatically fulfilled. For example, when specialising to the case of Hilbert modules over locally $$C^*$$-algebras, we show that both boundedness conditions are automatically fulfilled and, consequently, this general approach provides a rather direct proof of the general Stinespring–Kasparov type dilation theorem for completely positive maps on locally $$C^*$$-algebras and with values adjointable operators on Hilbert modules over locally $$C^*$$-algebras. © Springer International Publishing 2017 |
abstractGer |
Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and sufficient boundedness conditions in order for there to exist $$*$$-representations of the underlying $$*$$-semigroup on a VH-space linearisation, equivalently, on a reproducing kernel VH-space. We exhibit several situations when the latter boundedness condition is automatically fulfilled. For example, when specialising to the case of Hilbert modules over locally $$C^*$$-algebras, we show that both boundedness conditions are automatically fulfilled and, consequently, this general approach provides a rather direct proof of the general Stinespring–Kasparov type dilation theorem for completely positive maps on locally $$C^*$$-algebras and with values adjointable operators on Hilbert modules over locally $$C^*$$-algebras. © Springer International Publishing 2017 |
abstract_unstemmed |
Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and sufficient boundedness conditions in order for there to exist $$*$$-representations of the underlying $$*$$-semigroup on a VH-space linearisation, equivalently, on a reproducing kernel VH-space. We exhibit several situations when the latter boundedness condition is automatically fulfilled. For example, when specialising to the case of Hilbert modules over locally $$C^*$$-algebras, we show that both boundedness conditions are automatically fulfilled and, consequently, this general approach provides a rather direct proof of the general Stinespring–Kasparov type dilation theorem for completely positive maps on locally $$C^*$$-algebras and with values adjointable operators on Hilbert modules over locally $$C^*$$-algebras. © Springer International Publishing 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4318 |
container_issue |
2 |
title_short |
Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators |
url |
https://doi.org/10.1007/s00020-017-2346-1 |
remote_bool |
false |
author2 |
Gheondea, Aurelian |
author2Str |
Gheondea, Aurelian |
ppnlink |
129859184 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00020-017-2346-1 |
up_date |
2024-07-03T22:04:22.943Z |
_version_ |
1803597133061816320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069402460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323110844.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00020-017-2346-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069402460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00020-017-2346-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ay, Serdar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of $$\varvec{*}$$-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider positive semidefinite kernels valued in the $$*$$-algebra of continuous and continuously adjointable operators on a VH-space (Vector Hilbert space in the sense of Loynes) and that are invariant under actions of $$*$$-semigroups. For such a kernel we obtain two necessary and sufficient boundedness conditions in order for there to exist $$*$$-representations of the underlying $$*$$-semigroup on a VH-space linearisation, equivalently, on a reproducing kernel VH-space. We exhibit several situations when the latter boundedness condition is automatically fulfilled. For example, when specialising to the case of Hilbert modules over locally $$C^*$$-algebras, we show that both boundedness conditions are automatically fulfilled and, consequently, this general approach provides a rather direct proof of the general Stinespring–Kasparov type dilation theorem for completely positive maps on locally $$C^*$$-algebras and with values adjointable operators on Hilbert modules over locally $$C^*$$-algebras.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordered</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Admissible space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VH-space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive semidefinite kernel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-semigroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant kernel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linearisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reproducing kernel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Locally</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert locally</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Completely positive map</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gheondea, Aurelian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Integral equations and operator theory</subfield><subfield code="d">Springer International Publishing, 1978</subfield><subfield code="g">87(2017), 2 vom: Feb., Seite 263-307</subfield><subfield code="w">(DE-627)129859184</subfield><subfield code="w">(DE-600)282475-9</subfield><subfield code="w">(DE-576)015166651</subfield><subfield code="x">0378-620X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:87</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:263-307</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00020-017-2346-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">87</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="c">02</subfield><subfield code="h">263-307</subfield></datafield></record></collection>
|
score |
7.4001484 |