On the smoothness of the convex hull in negatively curved manifolds
Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK.
Autor*in: |
Borbély, Albert [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1995 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Birkhäuser Verlag 1995 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of geometry - Birkhäuser-Verlag, 1971, 54(1995), 1-2 vom: Nov., Seite 3-14 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:1995 ; number:1-2 ; month:11 ; pages:3-14 |
Links: |
---|
DOI / URN: |
10.1007/BF01222848 |
---|
Katalog-ID: |
OLC2069418855 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2069418855 | ||
003 | DE-627 | ||
005 | 20230323111137.0 | ||
007 | tu | ||
008 | 200819s1995 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01222848 |2 doi | |
035 | |a (DE-627)OLC2069418855 | ||
035 | |a (DE-He213)BF01222848-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Borbély, Albert |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the smoothness of the convex hull in negatively curved manifolds |
264 | 1 | |c 1995 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag 1995 | ||
520 | |a Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK. | ||
650 | 4 | |a Convex Hull | |
650 | 4 | |a Dirichlet Problem | |
650 | 4 | |a Boundary Regularity | |
650 | 4 | |a Curve Manifold | |
650 | 4 | |a Hadamard Manifold | |
773 | 0 | 8 | |i Enthalten in |t Journal of geometry |d Birkhäuser-Verlag, 1971 |g 54(1995), 1-2 vom: Nov., Seite 3-14 |w (DE-627)129288993 |w (DE-600)120140-2 |w (DE-576)014470527 |x 0047-2468 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:1995 |g number:1-2 |g month:11 |g pages:3-14 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01222848 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4325 | ||
951 | |a AR | ||
952 | |d 54 |j 1995 |e 1-2 |c 11 |h 3-14 |
author_variant |
a b ab |
---|---|
matchkey_str |
article:00472468:1995----::nhsotnsoteovxulneaiey |
hierarchy_sort_str |
1995 |
publishDate |
1995 |
allfields |
10.1007/BF01222848 doi (DE-627)OLC2069418855 (DE-He213)BF01222848-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Borbély, Albert verfasserin aut On the smoothness of the convex hull in negatively curved manifolds 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1995 Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK. Convex Hull Dirichlet Problem Boundary Regularity Curve Manifold Hadamard Manifold Enthalten in Journal of geometry Birkhäuser-Verlag, 1971 54(1995), 1-2 vom: Nov., Seite 3-14 (DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 0047-2468 nnns volume:54 year:1995 number:1-2 month:11 pages:3-14 https://doi.org/10.1007/BF01222848 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 AR 54 1995 1-2 11 3-14 |
spelling |
10.1007/BF01222848 doi (DE-627)OLC2069418855 (DE-He213)BF01222848-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Borbély, Albert verfasserin aut On the smoothness of the convex hull in negatively curved manifolds 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1995 Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK. Convex Hull Dirichlet Problem Boundary Regularity Curve Manifold Hadamard Manifold Enthalten in Journal of geometry Birkhäuser-Verlag, 1971 54(1995), 1-2 vom: Nov., Seite 3-14 (DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 0047-2468 nnns volume:54 year:1995 number:1-2 month:11 pages:3-14 https://doi.org/10.1007/BF01222848 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 AR 54 1995 1-2 11 3-14 |
allfields_unstemmed |
10.1007/BF01222848 doi (DE-627)OLC2069418855 (DE-He213)BF01222848-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Borbély, Albert verfasserin aut On the smoothness of the convex hull in negatively curved manifolds 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1995 Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK. Convex Hull Dirichlet Problem Boundary Regularity Curve Manifold Hadamard Manifold Enthalten in Journal of geometry Birkhäuser-Verlag, 1971 54(1995), 1-2 vom: Nov., Seite 3-14 (DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 0047-2468 nnns volume:54 year:1995 number:1-2 month:11 pages:3-14 https://doi.org/10.1007/BF01222848 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 AR 54 1995 1-2 11 3-14 |
allfieldsGer |
10.1007/BF01222848 doi (DE-627)OLC2069418855 (DE-He213)BF01222848-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Borbély, Albert verfasserin aut On the smoothness of the convex hull in negatively curved manifolds 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1995 Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK. Convex Hull Dirichlet Problem Boundary Regularity Curve Manifold Hadamard Manifold Enthalten in Journal of geometry Birkhäuser-Verlag, 1971 54(1995), 1-2 vom: Nov., Seite 3-14 (DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 0047-2468 nnns volume:54 year:1995 number:1-2 month:11 pages:3-14 https://doi.org/10.1007/BF01222848 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 AR 54 1995 1-2 11 3-14 |
allfieldsSound |
10.1007/BF01222848 doi (DE-627)OLC2069418855 (DE-He213)BF01222848-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Borbély, Albert verfasserin aut On the smoothness of the convex hull in negatively curved manifolds 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1995 Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK. Convex Hull Dirichlet Problem Boundary Regularity Curve Manifold Hadamard Manifold Enthalten in Journal of geometry Birkhäuser-Verlag, 1971 54(1995), 1-2 vom: Nov., Seite 3-14 (DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 0047-2468 nnns volume:54 year:1995 number:1-2 month:11 pages:3-14 https://doi.org/10.1007/BF01222848 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 AR 54 1995 1-2 11 3-14 |
language |
English |
source |
Enthalten in Journal of geometry 54(1995), 1-2 vom: Nov., Seite 3-14 volume:54 year:1995 number:1-2 month:11 pages:3-14 |
sourceStr |
Enthalten in Journal of geometry 54(1995), 1-2 vom: Nov., Seite 3-14 volume:54 year:1995 number:1-2 month:11 pages:3-14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Convex Hull Dirichlet Problem Boundary Regularity Curve Manifold Hadamard Manifold |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of geometry |
authorswithroles_txt_mv |
Borbély, Albert @@aut@@ |
publishDateDaySort_date |
1995-11-01T00:00:00Z |
hierarchy_top_id |
129288993 |
dewey-sort |
3510 |
id |
OLC2069418855 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069418855</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323111137.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1995 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01222848</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069418855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01222848-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borbély, Albert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the smoothness of the convex hull in negatively curved manifolds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex Hull</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirichlet Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Regularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curve Manifold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hadamard Manifold</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geometry</subfield><subfield code="d">Birkhäuser-Verlag, 1971</subfield><subfield code="g">54(1995), 1-2 vom: Nov., Seite 3-14</subfield><subfield code="w">(DE-627)129288993</subfield><subfield code="w">(DE-600)120140-2</subfield><subfield code="w">(DE-576)014470527</subfield><subfield code="x">0047-2468</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:3-14</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01222848</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">1995</subfield><subfield code="e">1-2</subfield><subfield code="c">11</subfield><subfield code="h">3-14</subfield></datafield></record></collection>
|
author |
Borbély, Albert |
spellingShingle |
Borbély, Albert ddc 510 ssgn 17,1 misc Convex Hull misc Dirichlet Problem misc Boundary Regularity misc Curve Manifold misc Hadamard Manifold On the smoothness of the convex hull in negatively curved manifolds |
authorStr |
Borbély, Albert |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129288993 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0047-2468 |
topic_title |
510 VZ 17,1 ssgn On the smoothness of the convex hull in negatively curved manifolds Convex Hull Dirichlet Problem Boundary Regularity Curve Manifold Hadamard Manifold |
topic |
ddc 510 ssgn 17,1 misc Convex Hull misc Dirichlet Problem misc Boundary Regularity misc Curve Manifold misc Hadamard Manifold |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Convex Hull misc Dirichlet Problem misc Boundary Regularity misc Curve Manifold misc Hadamard Manifold |
topic_browse |
ddc 510 ssgn 17,1 misc Convex Hull misc Dirichlet Problem misc Boundary Regularity misc Curve Manifold misc Hadamard Manifold |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of geometry |
hierarchy_parent_id |
129288993 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of geometry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 |
title |
On the smoothness of the convex hull in negatively curved manifolds |
ctrlnum |
(DE-627)OLC2069418855 (DE-He213)BF01222848-p |
title_full |
On the smoothness of the convex hull in negatively curved manifolds |
author_sort |
Borbély, Albert |
journal |
Journal of geometry |
journalStr |
Journal of geometry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1995 |
contenttype_str_mv |
txt |
container_start_page |
3 |
author_browse |
Borbély, Albert |
container_volume |
54 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Borbély, Albert |
doi_str_mv |
10.1007/BF01222848 |
dewey-full |
510 |
title_sort |
on the smoothness of the convex hull in negatively curved manifolds |
title_auth |
On the smoothness of the convex hull in negatively curved manifolds |
abstract |
Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK. © Birkhäuser Verlag 1995 |
abstractGer |
Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK. © Birkhäuser Verlag 1995 |
abstract_unstemmed |
Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK. © Birkhäuser Verlag 1995 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 |
container_issue |
1-2 |
title_short |
On the smoothness of the convex hull in negatively curved manifolds |
url |
https://doi.org/10.1007/BF01222848 |
remote_bool |
false |
ppnlink |
129288993 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01222848 |
up_date |
2024-07-03T22:07:58.863Z |
_version_ |
1803597359472443392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069418855</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323111137.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1995 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01222848</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069418855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01222848-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borbély, Albert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the smoothness of the convex hull in negatively curved manifolds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In Hadamard manifolds the existence of suitable large convex sets is important for solving the Dirichlet problem at infinity. In this note we proveC1 boundary regularity of the convex hull of any compact setK away from points which lie on geodesics connecting points inK.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex Hull</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirichlet Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Regularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curve Manifold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hadamard Manifold</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geometry</subfield><subfield code="d">Birkhäuser-Verlag, 1971</subfield><subfield code="g">54(1995), 1-2 vom: Nov., Seite 3-14</subfield><subfield code="w">(DE-627)129288993</subfield><subfield code="w">(DE-600)120140-2</subfield><subfield code="w">(DE-576)014470527</subfield><subfield code="x">0047-2468</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:3-14</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01222848</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">1995</subfield><subfield code="e">1-2</subfield><subfield code="c">11</subfield><subfield code="h">3-14</subfield></datafield></record></collection>
|
score |
7.399617 |