Affine algebraic sets relative to an algebraic theory
Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined an...
Ausführliche Beschreibung
Autor*in: |
Diers, Yves [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Birkhäuser Verlag 1999 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of geometry - Birkhäuser-Verlag, 1971, 65(1999), 1-2 vom: Juli, Seite 54-76 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:1999 ; number:1-2 ; month:07 ; pages:54-76 |
Links: |
---|
DOI / URN: |
10.1007/BF01228678 |
---|
Katalog-ID: |
OLC206942071X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC206942071X | ||
003 | DE-627 | ||
005 | 20230323111145.0 | ||
007 | tu | ||
008 | 200819s1999 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01228678 |2 doi | |
035 | |a (DE-627)OLC206942071X | ||
035 | |a (DE-He213)BF01228678-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Diers, Yves |e verfasserin |4 aut | |
245 | 1 | 0 | |a Affine algebraic sets relative to an algebraic theory |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag 1999 | ||
520 | |a Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined and a Galois duality established. These geometrical categories are characterized up to an equivalence of categories. | ||
650 | 4 | |a Algebraic Theory | |
650 | 4 | |a Galois Theory | |
650 | 4 | |a Geometrical Category | |
650 | 4 | |a Galois Duality | |
773 | 0 | 8 | |i Enthalten in |t Journal of geometry |d Birkhäuser-Verlag, 1971 |g 65(1999), 1-2 vom: Juli, Seite 54-76 |w (DE-627)129288993 |w (DE-600)120140-2 |w (DE-576)014470527 |x 0047-2468 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:1999 |g number:1-2 |g month:07 |g pages:54-76 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01228678 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4325 | ||
951 | |a AR | ||
952 | |d 65 |j 1999 |e 1-2 |c 07 |h 54-76 |
author_variant |
y d yd |
---|---|
matchkey_str |
article:00472468:1999----::fieleristrltvtaa |
hierarchy_sort_str |
1999 |
publishDate |
1999 |
allfields |
10.1007/BF01228678 doi (DE-627)OLC206942071X (DE-He213)BF01228678-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Diers, Yves verfasserin aut Affine algebraic sets relative to an algebraic theory 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1999 Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined and a Galois duality established. These geometrical categories are characterized up to an equivalence of categories. Algebraic Theory Galois Theory Geometrical Category Galois Duality Enthalten in Journal of geometry Birkhäuser-Verlag, 1971 65(1999), 1-2 vom: Juli, Seite 54-76 (DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 0047-2468 nnns volume:65 year:1999 number:1-2 month:07 pages:54-76 https://doi.org/10.1007/BF01228678 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 AR 65 1999 1-2 07 54-76 |
spelling |
10.1007/BF01228678 doi (DE-627)OLC206942071X (DE-He213)BF01228678-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Diers, Yves verfasserin aut Affine algebraic sets relative to an algebraic theory 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1999 Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined and a Galois duality established. These geometrical categories are characterized up to an equivalence of categories. Algebraic Theory Galois Theory Geometrical Category Galois Duality Enthalten in Journal of geometry Birkhäuser-Verlag, 1971 65(1999), 1-2 vom: Juli, Seite 54-76 (DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 0047-2468 nnns volume:65 year:1999 number:1-2 month:07 pages:54-76 https://doi.org/10.1007/BF01228678 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 AR 65 1999 1-2 07 54-76 |
allfields_unstemmed |
10.1007/BF01228678 doi (DE-627)OLC206942071X (DE-He213)BF01228678-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Diers, Yves verfasserin aut Affine algebraic sets relative to an algebraic theory 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1999 Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined and a Galois duality established. These geometrical categories are characterized up to an equivalence of categories. Algebraic Theory Galois Theory Geometrical Category Galois Duality Enthalten in Journal of geometry Birkhäuser-Verlag, 1971 65(1999), 1-2 vom: Juli, Seite 54-76 (DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 0047-2468 nnns volume:65 year:1999 number:1-2 month:07 pages:54-76 https://doi.org/10.1007/BF01228678 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 AR 65 1999 1-2 07 54-76 |
allfieldsGer |
10.1007/BF01228678 doi (DE-627)OLC206942071X (DE-He213)BF01228678-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Diers, Yves verfasserin aut Affine algebraic sets relative to an algebraic theory 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1999 Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined and a Galois duality established. These geometrical categories are characterized up to an equivalence of categories. Algebraic Theory Galois Theory Geometrical Category Galois Duality Enthalten in Journal of geometry Birkhäuser-Verlag, 1971 65(1999), 1-2 vom: Juli, Seite 54-76 (DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 0047-2468 nnns volume:65 year:1999 number:1-2 month:07 pages:54-76 https://doi.org/10.1007/BF01228678 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 AR 65 1999 1-2 07 54-76 |
allfieldsSound |
10.1007/BF01228678 doi (DE-627)OLC206942071X (DE-He213)BF01228678-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Diers, Yves verfasserin aut Affine algebraic sets relative to an algebraic theory 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1999 Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined and a Galois duality established. These geometrical categories are characterized up to an equivalence of categories. Algebraic Theory Galois Theory Geometrical Category Galois Duality Enthalten in Journal of geometry Birkhäuser-Verlag, 1971 65(1999), 1-2 vom: Juli, Seite 54-76 (DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 0047-2468 nnns volume:65 year:1999 number:1-2 month:07 pages:54-76 https://doi.org/10.1007/BF01228678 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 AR 65 1999 1-2 07 54-76 |
language |
English |
source |
Enthalten in Journal of geometry 65(1999), 1-2 vom: Juli, Seite 54-76 volume:65 year:1999 number:1-2 month:07 pages:54-76 |
sourceStr |
Enthalten in Journal of geometry 65(1999), 1-2 vom: Juli, Seite 54-76 volume:65 year:1999 number:1-2 month:07 pages:54-76 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Algebraic Theory Galois Theory Geometrical Category Galois Duality |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of geometry |
authorswithroles_txt_mv |
Diers, Yves @@aut@@ |
publishDateDaySort_date |
1999-07-01T00:00:00Z |
hierarchy_top_id |
129288993 |
dewey-sort |
3510 |
id |
OLC206942071X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206942071X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323111145.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01228678</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206942071X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01228678-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Diers, Yves</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Affine algebraic sets relative to an algebraic theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined and a Galois duality established. These geometrical categories are characterized up to an equivalence of categories.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galois Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometrical Category</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galois Duality</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geometry</subfield><subfield code="d">Birkhäuser-Verlag, 1971</subfield><subfield code="g">65(1999), 1-2 vom: Juli, Seite 54-76</subfield><subfield code="w">(DE-627)129288993</subfield><subfield code="w">(DE-600)120140-2</subfield><subfield code="w">(DE-576)014470527</subfield><subfield code="x">0047-2468</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:54-76</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01228678</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">1999</subfield><subfield code="e">1-2</subfield><subfield code="c">07</subfield><subfield code="h">54-76</subfield></datafield></record></collection>
|
author |
Diers, Yves |
spellingShingle |
Diers, Yves ddc 510 ssgn 17,1 misc Algebraic Theory misc Galois Theory misc Geometrical Category misc Galois Duality Affine algebraic sets relative to an algebraic theory |
authorStr |
Diers, Yves |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129288993 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0047-2468 |
topic_title |
510 VZ 17,1 ssgn Affine algebraic sets relative to an algebraic theory Algebraic Theory Galois Theory Geometrical Category Galois Duality |
topic |
ddc 510 ssgn 17,1 misc Algebraic Theory misc Galois Theory misc Geometrical Category misc Galois Duality |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Algebraic Theory misc Galois Theory misc Geometrical Category misc Galois Duality |
topic_browse |
ddc 510 ssgn 17,1 misc Algebraic Theory misc Galois Theory misc Geometrical Category misc Galois Duality |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of geometry |
hierarchy_parent_id |
129288993 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of geometry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129288993 (DE-600)120140-2 (DE-576)014470527 |
title |
Affine algebraic sets relative to an algebraic theory |
ctrlnum |
(DE-627)OLC206942071X (DE-He213)BF01228678-p |
title_full |
Affine algebraic sets relative to an algebraic theory |
author_sort |
Diers, Yves |
journal |
Journal of geometry |
journalStr |
Journal of geometry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
54 |
author_browse |
Diers, Yves |
container_volume |
65 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Diers, Yves |
doi_str_mv |
10.1007/BF01228678 |
dewey-full |
510 |
title_sort |
affine algebraic sets relative to an algebraic theory |
title_auth |
Affine algebraic sets relative to an algebraic theory |
abstract |
Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined and a Galois duality established. These geometrical categories are characterized up to an equivalence of categories. © Birkhäuser Verlag 1999 |
abstractGer |
Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined and a Galois duality established. These geometrical categories are characterized up to an equivalence of categories. © Birkhäuser Verlag 1999 |
abstract_unstemmed |
Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined and a Galois duality established. These geometrical categories are characterized up to an equivalence of categories. © Birkhäuser Verlag 1999 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4325 |
container_issue |
1-2 |
title_short |
Affine algebraic sets relative to an algebraic theory |
url |
https://doi.org/10.1007/BF01228678 |
remote_bool |
false |
ppnlink |
129288993 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01228678 |
up_date |
2024-07-03T22:08:18.577Z |
_version_ |
1803597380140924928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206942071X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323111145.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01228678</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206942071X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01228678-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Diers, Yves</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Affine algebraic sets relative to an algebraic theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract For an arbitrary algebraic theory T and a prescribed T-algebraL, the geometrical category AfAlgSet(L) of affine algebraic sets over the affine lineL is build up. It is proved to be dually equivalent to the category FcAlg(L) of functional T-algebras overL. The Galois theory ofL is defined and a Galois duality established. These geometrical categories are characterized up to an equivalence of categories.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galois Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometrical Category</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galois Duality</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geometry</subfield><subfield code="d">Birkhäuser-Verlag, 1971</subfield><subfield code="g">65(1999), 1-2 vom: Juli, Seite 54-76</subfield><subfield code="w">(DE-627)129288993</subfield><subfield code="w">(DE-600)120140-2</subfield><subfield code="w">(DE-576)014470527</subfield><subfield code="x">0047-2468</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:54-76</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01228678</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">1999</subfield><subfield code="e">1-2</subfield><subfield code="c">07</subfield><subfield code="h">54-76</subfield></datafield></record></collection>
|
score |
7.4025326 |