An Iterative Modification of Shepard–Bernoulli Operator
Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling.
Autor*in: |
Cătinaş, Teodora [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Basel 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Results in mathematics - Springer International Publishing, 1984, 69(2015), 3-4 vom: 06. Okt., Seite 387-395 |
---|---|
Übergeordnetes Werk: |
volume:69 ; year:2015 ; number:3-4 ; day:06 ; month:10 ; pages:387-395 |
Links: |
---|
DOI / URN: |
10.1007/s00025-015-0498-3 |
---|
Katalog-ID: |
OLC206953524X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC206953524X | ||
003 | DE-627 | ||
005 | 20230323113434.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00025-015-0498-3 |2 doi | |
035 | |a (DE-627)OLC206953524X | ||
035 | |a (DE-He213)s00025-015-0498-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Cătinaş, Teodora |e verfasserin |4 aut | |
245 | 1 | 0 | |a An Iterative Modification of Shepard–Bernoulli Operator |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Basel 2015 | ||
520 | |a Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling. | ||
650 | 4 | |a Shepard operator | |
650 | 4 | |a Bernoulli operator | |
650 | 4 | |a iterative multiscale method | |
650 | 4 | |a interpolation of scattered data | |
773 | 0 | 8 | |i Enthalten in |t Results in mathematics |d Springer International Publishing, 1984 |g 69(2015), 3-4 vom: 06. Okt., Seite 387-395 |w (DE-627)129571423 |w (DE-600)226632-5 |w (DE-576)015060160 |x 1422-6383 |7 nnns |
773 | 1 | 8 | |g volume:69 |g year:2015 |g number:3-4 |g day:06 |g month:10 |g pages:387-395 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00025-015-0498-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 69 |j 2015 |e 3-4 |b 06 |c 10 |h 387-395 |
author_variant |
t c tc |
---|---|
matchkey_str |
article:14226383:2015----::ntrtvmdfctooseaden |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00025-015-0498-3 doi (DE-627)OLC206953524X (DE-He213)s00025-015-0498-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Cătinaş, Teodora verfasserin aut An Iterative Modification of Shepard–Bernoulli Operator 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2015 Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling. Shepard operator Bernoulli operator iterative multiscale method interpolation of scattered data Enthalten in Results in mathematics Springer International Publishing, 1984 69(2015), 3-4 vom: 06. Okt., Seite 387-395 (DE-627)129571423 (DE-600)226632-5 (DE-576)015060160 1422-6383 nnns volume:69 year:2015 number:3-4 day:06 month:10 pages:387-395 https://doi.org/10.1007/s00025-015-0498-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4318 AR 69 2015 3-4 06 10 387-395 |
spelling |
10.1007/s00025-015-0498-3 doi (DE-627)OLC206953524X (DE-He213)s00025-015-0498-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Cătinaş, Teodora verfasserin aut An Iterative Modification of Shepard–Bernoulli Operator 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2015 Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling. Shepard operator Bernoulli operator iterative multiscale method interpolation of scattered data Enthalten in Results in mathematics Springer International Publishing, 1984 69(2015), 3-4 vom: 06. Okt., Seite 387-395 (DE-627)129571423 (DE-600)226632-5 (DE-576)015060160 1422-6383 nnns volume:69 year:2015 number:3-4 day:06 month:10 pages:387-395 https://doi.org/10.1007/s00025-015-0498-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4318 AR 69 2015 3-4 06 10 387-395 |
allfields_unstemmed |
10.1007/s00025-015-0498-3 doi (DE-627)OLC206953524X (DE-He213)s00025-015-0498-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Cătinaş, Teodora verfasserin aut An Iterative Modification of Shepard–Bernoulli Operator 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2015 Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling. Shepard operator Bernoulli operator iterative multiscale method interpolation of scattered data Enthalten in Results in mathematics Springer International Publishing, 1984 69(2015), 3-4 vom: 06. Okt., Seite 387-395 (DE-627)129571423 (DE-600)226632-5 (DE-576)015060160 1422-6383 nnns volume:69 year:2015 number:3-4 day:06 month:10 pages:387-395 https://doi.org/10.1007/s00025-015-0498-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4318 AR 69 2015 3-4 06 10 387-395 |
allfieldsGer |
10.1007/s00025-015-0498-3 doi (DE-627)OLC206953524X (DE-He213)s00025-015-0498-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Cătinaş, Teodora verfasserin aut An Iterative Modification of Shepard–Bernoulli Operator 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2015 Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling. Shepard operator Bernoulli operator iterative multiscale method interpolation of scattered data Enthalten in Results in mathematics Springer International Publishing, 1984 69(2015), 3-4 vom: 06. Okt., Seite 387-395 (DE-627)129571423 (DE-600)226632-5 (DE-576)015060160 1422-6383 nnns volume:69 year:2015 number:3-4 day:06 month:10 pages:387-395 https://doi.org/10.1007/s00025-015-0498-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4318 AR 69 2015 3-4 06 10 387-395 |
allfieldsSound |
10.1007/s00025-015-0498-3 doi (DE-627)OLC206953524X (DE-He213)s00025-015-0498-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Cătinaş, Teodora verfasserin aut An Iterative Modification of Shepard–Bernoulli Operator 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2015 Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling. Shepard operator Bernoulli operator iterative multiscale method interpolation of scattered data Enthalten in Results in mathematics Springer International Publishing, 1984 69(2015), 3-4 vom: 06. Okt., Seite 387-395 (DE-627)129571423 (DE-600)226632-5 (DE-576)015060160 1422-6383 nnns volume:69 year:2015 number:3-4 day:06 month:10 pages:387-395 https://doi.org/10.1007/s00025-015-0498-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4318 AR 69 2015 3-4 06 10 387-395 |
language |
English |
source |
Enthalten in Results in mathematics 69(2015), 3-4 vom: 06. Okt., Seite 387-395 volume:69 year:2015 number:3-4 day:06 month:10 pages:387-395 |
sourceStr |
Enthalten in Results in mathematics 69(2015), 3-4 vom: 06. Okt., Seite 387-395 volume:69 year:2015 number:3-4 day:06 month:10 pages:387-395 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Shepard operator Bernoulli operator iterative multiscale method interpolation of scattered data |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Results in mathematics |
authorswithroles_txt_mv |
Cătinaş, Teodora @@aut@@ |
publishDateDaySort_date |
2015-10-06T00:00:00Z |
hierarchy_top_id |
129571423 |
dewey-sort |
3510 |
id |
OLC206953524X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206953524X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113434.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00025-015-0498-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206953524X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00025-015-0498-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cătinaş, Teodora</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Iterative Modification of Shepard–Bernoulli Operator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Basel 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shepard operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bernoulli operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iterative multiscale method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interpolation of scattered data</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Results in mathematics</subfield><subfield code="d">Springer International Publishing, 1984</subfield><subfield code="g">69(2015), 3-4 vom: 06. Okt., Seite 387-395</subfield><subfield code="w">(DE-627)129571423</subfield><subfield code="w">(DE-600)226632-5</subfield><subfield code="w">(DE-576)015060160</subfield><subfield code="x">1422-6383</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:69</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:06</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:387-395</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00025-015-0498-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">69</subfield><subfield code="j">2015</subfield><subfield code="e">3-4</subfield><subfield code="b">06</subfield><subfield code="c">10</subfield><subfield code="h">387-395</subfield></datafield></record></collection>
|
author |
Cătinaş, Teodora |
spellingShingle |
Cătinaş, Teodora ddc 510 ssgn 17,1 misc Shepard operator misc Bernoulli operator misc iterative multiscale method misc interpolation of scattered data An Iterative Modification of Shepard–Bernoulli Operator |
authorStr |
Cătinaş, Teodora |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129571423 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1422-6383 |
topic_title |
510 VZ 17,1 ssgn An Iterative Modification of Shepard–Bernoulli Operator Shepard operator Bernoulli operator iterative multiscale method interpolation of scattered data |
topic |
ddc 510 ssgn 17,1 misc Shepard operator misc Bernoulli operator misc iterative multiscale method misc interpolation of scattered data |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Shepard operator misc Bernoulli operator misc iterative multiscale method misc interpolation of scattered data |
topic_browse |
ddc 510 ssgn 17,1 misc Shepard operator misc Bernoulli operator misc iterative multiscale method misc interpolation of scattered data |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Results in mathematics |
hierarchy_parent_id |
129571423 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Results in mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129571423 (DE-600)226632-5 (DE-576)015060160 |
title |
An Iterative Modification of Shepard–Bernoulli Operator |
ctrlnum |
(DE-627)OLC206953524X (DE-He213)s00025-015-0498-3-p |
title_full |
An Iterative Modification of Shepard–Bernoulli Operator |
author_sort |
Cătinaş, Teodora |
journal |
Results in mathematics |
journalStr |
Results in mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
387 |
author_browse |
Cătinaş, Teodora |
container_volume |
69 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Cătinaş, Teodora |
doi_str_mv |
10.1007/s00025-015-0498-3 |
dewey-full |
510 |
title_sort |
an iterative modification of shepard–bernoulli operator |
title_auth |
An Iterative Modification of Shepard–Bernoulli Operator |
abstract |
Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling. © Springer Basel 2015 |
abstractGer |
Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling. © Springer Basel 2015 |
abstract_unstemmed |
Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling. © Springer Basel 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4318 |
container_issue |
3-4 |
title_short |
An Iterative Modification of Shepard–Bernoulli Operator |
url |
https://doi.org/10.1007/s00025-015-0498-3 |
remote_bool |
false |
ppnlink |
129571423 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00025-015-0498-3 |
up_date |
2024-07-03T22:32:58.601Z |
_version_ |
1803598932058570752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206953524X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113434.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00025-015-0498-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206953524X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00025-015-0498-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cătinaş, Teodora</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Iterative Modification of Shepard–Bernoulli Operator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Basel 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We introduce an iterative modification of the combined Shepard operator of Bernoulli type, introduced in Cătinaş (Calcolo 44:189–202, 2007), that is free from artificial setup of parameters, and corresponds to successive scaling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shepard operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bernoulli operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iterative multiscale method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interpolation of scattered data</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Results in mathematics</subfield><subfield code="d">Springer International Publishing, 1984</subfield><subfield code="g">69(2015), 3-4 vom: 06. Okt., Seite 387-395</subfield><subfield code="w">(DE-627)129571423</subfield><subfield code="w">(DE-600)226632-5</subfield><subfield code="w">(DE-576)015060160</subfield><subfield code="x">1422-6383</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:69</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:06</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:387-395</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00025-015-0498-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">69</subfield><subfield code="j">2015</subfield><subfield code="e">3-4</subfield><subfield code="b">06</subfield><subfield code="c">10</subfield><subfield code="h">387-395</subfield></datafield></record></collection>
|
score |
7.4007816 |