Pfaffian intersections and multiplicity cycles
Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algeb...
Ausführliche Beschreibung
Autor*in: |
Binyamini, Gal [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Basel 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Selecta mathematica - Springer International Publishing, 1993, 22(2015), 1 vom: 19. Aug., Seite 297-318 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2015 ; number:1 ; day:19 ; month:08 ; pages:297-318 |
Links: |
---|
DOI / URN: |
10.1007/s00029-015-0191-0 |
---|
Katalog-ID: |
OLC206954074X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC206954074X | ||
003 | DE-627 | ||
005 | 20230323114135.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00029-015-0191-0 |2 doi | |
035 | |a (DE-627)OLC206954074X | ||
035 | |a (DE-He213)s00029-015-0191-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Binyamini, Gal |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pfaffian intersections and multiplicity cycles |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Basel 2015 | ||
520 | |a Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algebraic cycle. The construction is based on Gabrièlov’s complex analog of the Rolle–Khovanskiĭ lemma. We illustrate the main result by deriving similar uniform estimates for the complexity of the Milnor fiber of a deformation (under a smoothness assumption) and for the order of contact between an algebraic hypersurface and an arbitrary non-singular one-dimensional foliation. We also use the main result to give an alternative geometric proof for a classical multiplicity estimate in the context of commutative group varieties. | ||
650 | 4 | |a Pfaffian systems | |
650 | 4 | |a Fewnomials | |
650 | 4 | |a Local multiplicities | |
773 | 0 | 8 | |i Enthalten in |t Selecta mathematica |d Springer International Publishing, 1993 |g 22(2015), 1 vom: 19. Aug., Seite 297-318 |w (DE-627)171156862 |w (DE-600)1158980-2 |w (DE-576)038490609 |x 1022-1824 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2015 |g number:1 |g day:19 |g month:08 |g pages:297-318 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00029-015-0191-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 22 |j 2015 |e 1 |b 19 |c 08 |h 297-318 |
author_variant |
g b gb |
---|---|
matchkey_str |
article:10221824:2015----::ffinnescinadutp |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00029-015-0191-0 doi (DE-627)OLC206954074X (DE-He213)s00029-015-0191-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Binyamini, Gal verfasserin aut Pfaffian intersections and multiplicity cycles 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2015 Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algebraic cycle. The construction is based on Gabrièlov’s complex analog of the Rolle–Khovanskiĭ lemma. We illustrate the main result by deriving similar uniform estimates for the complexity of the Milnor fiber of a deformation (under a smoothness assumption) and for the order of contact between an algebraic hypersurface and an arbitrary non-singular one-dimensional foliation. We also use the main result to give an alternative geometric proof for a classical multiplicity estimate in the context of commutative group varieties. Pfaffian systems Fewnomials Local multiplicities Enthalten in Selecta mathematica Springer International Publishing, 1993 22(2015), 1 vom: 19. Aug., Seite 297-318 (DE-627)171156862 (DE-600)1158980-2 (DE-576)038490609 1022-1824 nnns volume:22 year:2015 number:1 day:19 month:08 pages:297-318 https://doi.org/10.1007/s00029-015-0191-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 22 2015 1 19 08 297-318 |
spelling |
10.1007/s00029-015-0191-0 doi (DE-627)OLC206954074X (DE-He213)s00029-015-0191-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Binyamini, Gal verfasserin aut Pfaffian intersections and multiplicity cycles 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2015 Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algebraic cycle. The construction is based on Gabrièlov’s complex analog of the Rolle–Khovanskiĭ lemma. We illustrate the main result by deriving similar uniform estimates for the complexity of the Milnor fiber of a deformation (under a smoothness assumption) and for the order of contact between an algebraic hypersurface and an arbitrary non-singular one-dimensional foliation. We also use the main result to give an alternative geometric proof for a classical multiplicity estimate in the context of commutative group varieties. Pfaffian systems Fewnomials Local multiplicities Enthalten in Selecta mathematica Springer International Publishing, 1993 22(2015), 1 vom: 19. Aug., Seite 297-318 (DE-627)171156862 (DE-600)1158980-2 (DE-576)038490609 1022-1824 nnns volume:22 year:2015 number:1 day:19 month:08 pages:297-318 https://doi.org/10.1007/s00029-015-0191-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 22 2015 1 19 08 297-318 |
allfields_unstemmed |
10.1007/s00029-015-0191-0 doi (DE-627)OLC206954074X (DE-He213)s00029-015-0191-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Binyamini, Gal verfasserin aut Pfaffian intersections and multiplicity cycles 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2015 Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algebraic cycle. The construction is based on Gabrièlov’s complex analog of the Rolle–Khovanskiĭ lemma. We illustrate the main result by deriving similar uniform estimates for the complexity of the Milnor fiber of a deformation (under a smoothness assumption) and for the order of contact between an algebraic hypersurface and an arbitrary non-singular one-dimensional foliation. We also use the main result to give an alternative geometric proof for a classical multiplicity estimate in the context of commutative group varieties. Pfaffian systems Fewnomials Local multiplicities Enthalten in Selecta mathematica Springer International Publishing, 1993 22(2015), 1 vom: 19. Aug., Seite 297-318 (DE-627)171156862 (DE-600)1158980-2 (DE-576)038490609 1022-1824 nnns volume:22 year:2015 number:1 day:19 month:08 pages:297-318 https://doi.org/10.1007/s00029-015-0191-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 22 2015 1 19 08 297-318 |
allfieldsGer |
10.1007/s00029-015-0191-0 doi (DE-627)OLC206954074X (DE-He213)s00029-015-0191-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Binyamini, Gal verfasserin aut Pfaffian intersections and multiplicity cycles 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2015 Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algebraic cycle. The construction is based on Gabrièlov’s complex analog of the Rolle–Khovanskiĭ lemma. We illustrate the main result by deriving similar uniform estimates for the complexity of the Milnor fiber of a deformation (under a smoothness assumption) and for the order of contact between an algebraic hypersurface and an arbitrary non-singular one-dimensional foliation. We also use the main result to give an alternative geometric proof for a classical multiplicity estimate in the context of commutative group varieties. Pfaffian systems Fewnomials Local multiplicities Enthalten in Selecta mathematica Springer International Publishing, 1993 22(2015), 1 vom: 19. Aug., Seite 297-318 (DE-627)171156862 (DE-600)1158980-2 (DE-576)038490609 1022-1824 nnns volume:22 year:2015 number:1 day:19 month:08 pages:297-318 https://doi.org/10.1007/s00029-015-0191-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 22 2015 1 19 08 297-318 |
allfieldsSound |
10.1007/s00029-015-0191-0 doi (DE-627)OLC206954074X (DE-He213)s00029-015-0191-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Binyamini, Gal verfasserin aut Pfaffian intersections and multiplicity cycles 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2015 Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algebraic cycle. The construction is based on Gabrièlov’s complex analog of the Rolle–Khovanskiĭ lemma. We illustrate the main result by deriving similar uniform estimates for the complexity of the Milnor fiber of a deformation (under a smoothness assumption) and for the order of contact between an algebraic hypersurface and an arbitrary non-singular one-dimensional foliation. We also use the main result to give an alternative geometric proof for a classical multiplicity estimate in the context of commutative group varieties. Pfaffian systems Fewnomials Local multiplicities Enthalten in Selecta mathematica Springer International Publishing, 1993 22(2015), 1 vom: 19. Aug., Seite 297-318 (DE-627)171156862 (DE-600)1158980-2 (DE-576)038490609 1022-1824 nnns volume:22 year:2015 number:1 day:19 month:08 pages:297-318 https://doi.org/10.1007/s00029-015-0191-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 22 2015 1 19 08 297-318 |
language |
English |
source |
Enthalten in Selecta mathematica 22(2015), 1 vom: 19. Aug., Seite 297-318 volume:22 year:2015 number:1 day:19 month:08 pages:297-318 |
sourceStr |
Enthalten in Selecta mathematica 22(2015), 1 vom: 19. Aug., Seite 297-318 volume:22 year:2015 number:1 day:19 month:08 pages:297-318 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pfaffian systems Fewnomials Local multiplicities |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Selecta mathematica |
authorswithroles_txt_mv |
Binyamini, Gal @@aut@@ |
publishDateDaySort_date |
2015-08-19T00:00:00Z |
hierarchy_top_id |
171156862 |
dewey-sort |
3510 |
id |
OLC206954074X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206954074X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323114135.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00029-015-0191-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206954074X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00029-015-0191-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Binyamini, Gal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pfaffian intersections and multiplicity cycles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Basel 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algebraic cycle. The construction is based on Gabrièlov’s complex analog of the Rolle–Khovanskiĭ lemma. We illustrate the main result by deriving similar uniform estimates for the complexity of the Milnor fiber of a deformation (under a smoothness assumption) and for the order of contact between an algebraic hypersurface and an arbitrary non-singular one-dimensional foliation. We also use the main result to give an alternative geometric proof for a classical multiplicity estimate in the context of commutative group varieties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pfaffian systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fewnomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local multiplicities</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Selecta mathematica</subfield><subfield code="d">Springer International Publishing, 1993</subfield><subfield code="g">22(2015), 1 vom: 19. Aug., Seite 297-318</subfield><subfield code="w">(DE-627)171156862</subfield><subfield code="w">(DE-600)1158980-2</subfield><subfield code="w">(DE-576)038490609</subfield><subfield code="x">1022-1824</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:297-318</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00029-015-0191-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">08</subfield><subfield code="h">297-318</subfield></datafield></record></collection>
|
author |
Binyamini, Gal |
spellingShingle |
Binyamini, Gal ddc 510 ssgn 17,1 misc Pfaffian systems misc Fewnomials misc Local multiplicities Pfaffian intersections and multiplicity cycles |
authorStr |
Binyamini, Gal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171156862 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1022-1824 |
topic_title |
510 VZ 17,1 ssgn Pfaffian intersections and multiplicity cycles Pfaffian systems Fewnomials Local multiplicities |
topic |
ddc 510 ssgn 17,1 misc Pfaffian systems misc Fewnomials misc Local multiplicities |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Pfaffian systems misc Fewnomials misc Local multiplicities |
topic_browse |
ddc 510 ssgn 17,1 misc Pfaffian systems misc Fewnomials misc Local multiplicities |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Selecta mathematica |
hierarchy_parent_id |
171156862 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Selecta mathematica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171156862 (DE-600)1158980-2 (DE-576)038490609 |
title |
Pfaffian intersections and multiplicity cycles |
ctrlnum |
(DE-627)OLC206954074X (DE-He213)s00029-015-0191-0-p |
title_full |
Pfaffian intersections and multiplicity cycles |
author_sort |
Binyamini, Gal |
journal |
Selecta mathematica |
journalStr |
Selecta mathematica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
297 |
author_browse |
Binyamini, Gal |
container_volume |
22 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Binyamini, Gal |
doi_str_mv |
10.1007/s00029-015-0191-0 |
dewey-full |
510 |
title_sort |
pfaffian intersections and multiplicity cycles |
title_auth |
Pfaffian intersections and multiplicity cycles |
abstract |
Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algebraic cycle. The construction is based on Gabrièlov’s complex analog of the Rolle–Khovanskiĭ lemma. We illustrate the main result by deriving similar uniform estimates for the complexity of the Milnor fiber of a deformation (under a smoothness assumption) and for the order of contact between an algebraic hypersurface and an arbitrary non-singular one-dimensional foliation. We also use the main result to give an alternative geometric proof for a classical multiplicity estimate in the context of commutative group varieties. © Springer Basel 2015 |
abstractGer |
Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algebraic cycle. The construction is based on Gabrièlov’s complex analog of the Rolle–Khovanskiĭ lemma. We illustrate the main result by deriving similar uniform estimates for the complexity of the Milnor fiber of a deformation (under a smoothness assumption) and for the order of contact between an algebraic hypersurface and an arbitrary non-singular one-dimensional foliation. We also use the main result to give an alternative geometric proof for a classical multiplicity estimate in the context of commutative group varieties. © Springer Basel 2015 |
abstract_unstemmed |
Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algebraic cycle. The construction is based on Gabrièlov’s complex analog of the Rolle–Khovanskiĭ lemma. We illustrate the main result by deriving similar uniform estimates for the complexity of the Milnor fiber of a deformation (under a smoothness assumption) and for the order of contact between an algebraic hypersurface and an arbitrary non-singular one-dimensional foliation. We also use the main result to give an alternative geometric proof for a classical multiplicity estimate in the context of commutative group varieties. © Springer Basel 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 |
container_issue |
1 |
title_short |
Pfaffian intersections and multiplicity cycles |
url |
https://doi.org/10.1007/s00029-015-0191-0 |
remote_bool |
false |
ppnlink |
171156862 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00029-015-0191-0 |
up_date |
2024-07-03T22:34:00.586Z |
_version_ |
1803598997054554112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206954074X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323114135.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00029-015-0191-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206954074X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00029-015-0191-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Binyamini, Gal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pfaffian intersections and multiplicity cycles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Basel 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the problem of estimating the intersection multiplicity between an algebraic variety and a Pfaffian foliation, at every point of the variety. We show that this multiplicity can be majorized at every point p by the local algebraic multiplicity at p of a suitably constructed algebraic cycle. The construction is based on Gabrièlov’s complex analog of the Rolle–Khovanskiĭ lemma. We illustrate the main result by deriving similar uniform estimates for the complexity of the Milnor fiber of a deformation (under a smoothness assumption) and for the order of contact between an algebraic hypersurface and an arbitrary non-singular one-dimensional foliation. We also use the main result to give an alternative geometric proof for a classical multiplicity estimate in the context of commutative group varieties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pfaffian systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fewnomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local multiplicities</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Selecta mathematica</subfield><subfield code="d">Springer International Publishing, 1993</subfield><subfield code="g">22(2015), 1 vom: 19. Aug., Seite 297-318</subfield><subfield code="w">(DE-627)171156862</subfield><subfield code="w">(DE-600)1158980-2</subfield><subfield code="w">(DE-576)038490609</subfield><subfield code="x">1022-1824</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:297-318</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00029-015-0191-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">08</subfield><subfield code="h">297-318</subfield></datafield></record></collection>
|
score |
7.402337 |