Compressible flow induced by the transient motion of a wavemaker
Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is v...
Ausführliche Beschreibung
Autor*in: |
Frankel, I. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1990 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Birkhäuser Verlag 1990 |
---|
Übergeordnetes Werk: |
Enthalten in: Zeitschrift für angewandte Mathematik und Physik - Birkhäuser-Verlag, 1950, 41(1990), 5 vom: Sept., Seite 628-655 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:1990 ; number:5 ; month:09 ; pages:628-655 |
Links: |
---|
DOI / URN: |
10.1007/BF00946098 |
---|
Katalog-ID: |
OLC206960361X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC206960361X | ||
003 | DE-627 | ||
005 | 20230323114958.0 | ||
007 | tu | ||
008 | 200819s1990 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00946098 |2 doi | |
035 | |a (DE-627)OLC206960361X | ||
035 | |a (DE-He213)BF00946098-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Frankel, I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Compressible flow induced by the transient motion of a wavemaker |
264 | 1 | |c 1990 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag 1990 | ||
520 | |a Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is very short (e.g. impulsive motions). In the leading order the present problem is analogous to that of supersonic flow about a thin wing, thus the solution is represented by means of an appropriate ‘supersonic source’ distribution. Closed-form results are obtained for the case of impulsive motion (i.e. a “step function” velocity). The pressure field corresponds to systems of ‘double rarefaction’ and ‘double compression’ waves traversing the fluid domain intermittently. Following the passage of a rarefaction (compression) wave, the free surface becomes locally concave (convex). The resulting free surface profile consists of an elongating wavetrain in front of a ‘jet’ riding up the vertical wall. On the compressible time-scale the pressure and velocity fields approach a steady long-time limit. This limit corresponds to the ‘short-time’ incompressible flow prevailing after the attenuation of the pressure waves. The spatial nonuniformity of the asymptotic expansion in the neighbourhood of the waterline is briefly discussed. | ||
650 | 4 | |a Free Surface | |
650 | 4 | |a Compressibility | |
650 | 4 | |a Surface Elevation | |
650 | 4 | |a Supersonic Flow | |
650 | 4 | |a Horizontal Motion | |
773 | 0 | 8 | |i Enthalten in |t Zeitschrift für angewandte Mathematik und Physik |d Birkhäuser-Verlag, 1950 |g 41(1990), 5 vom: Sept., Seite 628-655 |w (DE-627)129474185 |w (DE-600)203013-5 |w (DE-576)014852039 |x 0044-2275 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:1990 |g number:5 |g month:09 |g pages:628-655 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00946098 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 41 |j 1990 |e 5 |c 09 |h 628-655 |
author_variant |
i f if |
---|---|
matchkey_str |
article:00442275:1990----::opesbelwnuebterninm |
hierarchy_sort_str |
1990 |
publishDate |
1990 |
allfields |
10.1007/BF00946098 doi (DE-627)OLC206960361X (DE-He213)BF00946098-p DE-627 ger DE-627 rakwb eng 530 510 VZ Frankel, I. verfasserin aut Compressible flow induced by the transient motion of a wavemaker 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1990 Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is very short (e.g. impulsive motions). In the leading order the present problem is analogous to that of supersonic flow about a thin wing, thus the solution is represented by means of an appropriate ‘supersonic source’ distribution. Closed-form results are obtained for the case of impulsive motion (i.e. a “step function” velocity). The pressure field corresponds to systems of ‘double rarefaction’ and ‘double compression’ waves traversing the fluid domain intermittently. Following the passage of a rarefaction (compression) wave, the free surface becomes locally concave (convex). The resulting free surface profile consists of an elongating wavetrain in front of a ‘jet’ riding up the vertical wall. On the compressible time-scale the pressure and velocity fields approach a steady long-time limit. This limit corresponds to the ‘short-time’ incompressible flow prevailing after the attenuation of the pressure waves. The spatial nonuniformity of the asymptotic expansion in the neighbourhood of the waterline is briefly discussed. Free Surface Compressibility Surface Elevation Supersonic Flow Horizontal Motion Enthalten in Zeitschrift für angewandte Mathematik und Physik Birkhäuser-Verlag, 1950 41(1990), 5 vom: Sept., Seite 628-655 (DE-627)129474185 (DE-600)203013-5 (DE-576)014852039 0044-2275 nnns volume:41 year:1990 number:5 month:09 pages:628-655 https://doi.org/10.1007/BF00946098 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2333 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 41 1990 5 09 628-655 |
spelling |
10.1007/BF00946098 doi (DE-627)OLC206960361X (DE-He213)BF00946098-p DE-627 ger DE-627 rakwb eng 530 510 VZ Frankel, I. verfasserin aut Compressible flow induced by the transient motion of a wavemaker 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1990 Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is very short (e.g. impulsive motions). In the leading order the present problem is analogous to that of supersonic flow about a thin wing, thus the solution is represented by means of an appropriate ‘supersonic source’ distribution. Closed-form results are obtained for the case of impulsive motion (i.e. a “step function” velocity). The pressure field corresponds to systems of ‘double rarefaction’ and ‘double compression’ waves traversing the fluid domain intermittently. Following the passage of a rarefaction (compression) wave, the free surface becomes locally concave (convex). The resulting free surface profile consists of an elongating wavetrain in front of a ‘jet’ riding up the vertical wall. On the compressible time-scale the pressure and velocity fields approach a steady long-time limit. This limit corresponds to the ‘short-time’ incompressible flow prevailing after the attenuation of the pressure waves. The spatial nonuniformity of the asymptotic expansion in the neighbourhood of the waterline is briefly discussed. Free Surface Compressibility Surface Elevation Supersonic Flow Horizontal Motion Enthalten in Zeitschrift für angewandte Mathematik und Physik Birkhäuser-Verlag, 1950 41(1990), 5 vom: Sept., Seite 628-655 (DE-627)129474185 (DE-600)203013-5 (DE-576)014852039 0044-2275 nnns volume:41 year:1990 number:5 month:09 pages:628-655 https://doi.org/10.1007/BF00946098 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2333 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 41 1990 5 09 628-655 |
allfields_unstemmed |
10.1007/BF00946098 doi (DE-627)OLC206960361X (DE-He213)BF00946098-p DE-627 ger DE-627 rakwb eng 530 510 VZ Frankel, I. verfasserin aut Compressible flow induced by the transient motion of a wavemaker 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1990 Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is very short (e.g. impulsive motions). In the leading order the present problem is analogous to that of supersonic flow about a thin wing, thus the solution is represented by means of an appropriate ‘supersonic source’ distribution. Closed-form results are obtained for the case of impulsive motion (i.e. a “step function” velocity). The pressure field corresponds to systems of ‘double rarefaction’ and ‘double compression’ waves traversing the fluid domain intermittently. Following the passage of a rarefaction (compression) wave, the free surface becomes locally concave (convex). The resulting free surface profile consists of an elongating wavetrain in front of a ‘jet’ riding up the vertical wall. On the compressible time-scale the pressure and velocity fields approach a steady long-time limit. This limit corresponds to the ‘short-time’ incompressible flow prevailing after the attenuation of the pressure waves. The spatial nonuniformity of the asymptotic expansion in the neighbourhood of the waterline is briefly discussed. Free Surface Compressibility Surface Elevation Supersonic Flow Horizontal Motion Enthalten in Zeitschrift für angewandte Mathematik und Physik Birkhäuser-Verlag, 1950 41(1990), 5 vom: Sept., Seite 628-655 (DE-627)129474185 (DE-600)203013-5 (DE-576)014852039 0044-2275 nnns volume:41 year:1990 number:5 month:09 pages:628-655 https://doi.org/10.1007/BF00946098 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2333 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 41 1990 5 09 628-655 |
allfieldsGer |
10.1007/BF00946098 doi (DE-627)OLC206960361X (DE-He213)BF00946098-p DE-627 ger DE-627 rakwb eng 530 510 VZ Frankel, I. verfasserin aut Compressible flow induced by the transient motion of a wavemaker 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1990 Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is very short (e.g. impulsive motions). In the leading order the present problem is analogous to that of supersonic flow about a thin wing, thus the solution is represented by means of an appropriate ‘supersonic source’ distribution. Closed-form results are obtained for the case of impulsive motion (i.e. a “step function” velocity). The pressure field corresponds to systems of ‘double rarefaction’ and ‘double compression’ waves traversing the fluid domain intermittently. Following the passage of a rarefaction (compression) wave, the free surface becomes locally concave (convex). The resulting free surface profile consists of an elongating wavetrain in front of a ‘jet’ riding up the vertical wall. On the compressible time-scale the pressure and velocity fields approach a steady long-time limit. This limit corresponds to the ‘short-time’ incompressible flow prevailing after the attenuation of the pressure waves. The spatial nonuniformity of the asymptotic expansion in the neighbourhood of the waterline is briefly discussed. Free Surface Compressibility Surface Elevation Supersonic Flow Horizontal Motion Enthalten in Zeitschrift für angewandte Mathematik und Physik Birkhäuser-Verlag, 1950 41(1990), 5 vom: Sept., Seite 628-655 (DE-627)129474185 (DE-600)203013-5 (DE-576)014852039 0044-2275 nnns volume:41 year:1990 number:5 month:09 pages:628-655 https://doi.org/10.1007/BF00946098 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2333 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 41 1990 5 09 628-655 |
allfieldsSound |
10.1007/BF00946098 doi (DE-627)OLC206960361X (DE-He213)BF00946098-p DE-627 ger DE-627 rakwb eng 530 510 VZ Frankel, I. verfasserin aut Compressible flow induced by the transient motion of a wavemaker 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag 1990 Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is very short (e.g. impulsive motions). In the leading order the present problem is analogous to that of supersonic flow about a thin wing, thus the solution is represented by means of an appropriate ‘supersonic source’ distribution. Closed-form results are obtained for the case of impulsive motion (i.e. a “step function” velocity). The pressure field corresponds to systems of ‘double rarefaction’ and ‘double compression’ waves traversing the fluid domain intermittently. Following the passage of a rarefaction (compression) wave, the free surface becomes locally concave (convex). The resulting free surface profile consists of an elongating wavetrain in front of a ‘jet’ riding up the vertical wall. On the compressible time-scale the pressure and velocity fields approach a steady long-time limit. This limit corresponds to the ‘short-time’ incompressible flow prevailing after the attenuation of the pressure waves. The spatial nonuniformity of the asymptotic expansion in the neighbourhood of the waterline is briefly discussed. Free Surface Compressibility Surface Elevation Supersonic Flow Horizontal Motion Enthalten in Zeitschrift für angewandte Mathematik und Physik Birkhäuser-Verlag, 1950 41(1990), 5 vom: Sept., Seite 628-655 (DE-627)129474185 (DE-600)203013-5 (DE-576)014852039 0044-2275 nnns volume:41 year:1990 number:5 month:09 pages:628-655 https://doi.org/10.1007/BF00946098 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2333 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 41 1990 5 09 628-655 |
language |
English |
source |
Enthalten in Zeitschrift für angewandte Mathematik und Physik 41(1990), 5 vom: Sept., Seite 628-655 volume:41 year:1990 number:5 month:09 pages:628-655 |
sourceStr |
Enthalten in Zeitschrift für angewandte Mathematik und Physik 41(1990), 5 vom: Sept., Seite 628-655 volume:41 year:1990 number:5 month:09 pages:628-655 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Free Surface Compressibility Surface Elevation Supersonic Flow Horizontal Motion |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Zeitschrift für angewandte Mathematik und Physik |
authorswithroles_txt_mv |
Frankel, I. @@aut@@ |
publishDateDaySort_date |
1990-09-01T00:00:00Z |
hierarchy_top_id |
129474185 |
dewey-sort |
3530 |
id |
OLC206960361X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206960361X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323114958.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1990 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00946098</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206960361X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00946098-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Frankel, I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compressible flow induced by the transient motion of a wavemaker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1990</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1990</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is very short (e.g. impulsive motions). In the leading order the present problem is analogous to that of supersonic flow about a thin wing, thus the solution is represented by means of an appropriate ‘supersonic source’ distribution. Closed-form results are obtained for the case of impulsive motion (i.e. a “step function” velocity). The pressure field corresponds to systems of ‘double rarefaction’ and ‘double compression’ waves traversing the fluid domain intermittently. Following the passage of a rarefaction (compression) wave, the free surface becomes locally concave (convex). The resulting free surface profile consists of an elongating wavetrain in front of a ‘jet’ riding up the vertical wall. On the compressible time-scale the pressure and velocity fields approach a steady long-time limit. This limit corresponds to the ‘short-time’ incompressible flow prevailing after the attenuation of the pressure waves. The spatial nonuniformity of the asymptotic expansion in the neighbourhood of the waterline is briefly discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface Elevation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supersonic Flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Horizontal Motion</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Zeitschrift für angewandte Mathematik und Physik</subfield><subfield code="d">Birkhäuser-Verlag, 1950</subfield><subfield code="g">41(1990), 5 vom: Sept., Seite 628-655</subfield><subfield code="w">(DE-627)129474185</subfield><subfield code="w">(DE-600)203013-5</subfield><subfield code="w">(DE-576)014852039</subfield><subfield code="x">0044-2275</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:1990</subfield><subfield code="g">number:5</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:628-655</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00946098</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">1990</subfield><subfield code="e">5</subfield><subfield code="c">09</subfield><subfield code="h">628-655</subfield></datafield></record></collection>
|
author |
Frankel, I. |
spellingShingle |
Frankel, I. ddc 530 misc Free Surface misc Compressibility misc Surface Elevation misc Supersonic Flow misc Horizontal Motion Compressible flow induced by the transient motion of a wavemaker |
authorStr |
Frankel, I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129474185 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0044-2275 |
topic_title |
530 510 VZ Compressible flow induced by the transient motion of a wavemaker Free Surface Compressibility Surface Elevation Supersonic Flow Horizontal Motion |
topic |
ddc 530 misc Free Surface misc Compressibility misc Surface Elevation misc Supersonic Flow misc Horizontal Motion |
topic_unstemmed |
ddc 530 misc Free Surface misc Compressibility misc Surface Elevation misc Supersonic Flow misc Horizontal Motion |
topic_browse |
ddc 530 misc Free Surface misc Compressibility misc Surface Elevation misc Supersonic Flow misc Horizontal Motion |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Zeitschrift für angewandte Mathematik und Physik |
hierarchy_parent_id |
129474185 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Zeitschrift für angewandte Mathematik und Physik |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129474185 (DE-600)203013-5 (DE-576)014852039 |
title |
Compressible flow induced by the transient motion of a wavemaker |
ctrlnum |
(DE-627)OLC206960361X (DE-He213)BF00946098-p |
title_full |
Compressible flow induced by the transient motion of a wavemaker |
author_sort |
Frankel, I. |
journal |
Zeitschrift für angewandte Mathematik und Physik |
journalStr |
Zeitschrift für angewandte Mathematik und Physik |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1990 |
contenttype_str_mv |
txt |
container_start_page |
628 |
author_browse |
Frankel, I. |
container_volume |
41 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Frankel, I. |
doi_str_mv |
10.1007/BF00946098 |
dewey-full |
530 510 |
title_sort |
compressible flow induced by the transient motion of a wavemaker |
title_auth |
Compressible flow induced by the transient motion of a wavemaker |
abstract |
Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is very short (e.g. impulsive motions). In the leading order the present problem is analogous to that of supersonic flow about a thin wing, thus the solution is represented by means of an appropriate ‘supersonic source’ distribution. Closed-form results are obtained for the case of impulsive motion (i.e. a “step function” velocity). The pressure field corresponds to systems of ‘double rarefaction’ and ‘double compression’ waves traversing the fluid domain intermittently. Following the passage of a rarefaction (compression) wave, the free surface becomes locally concave (convex). The resulting free surface profile consists of an elongating wavetrain in front of a ‘jet’ riding up the vertical wall. On the compressible time-scale the pressure and velocity fields approach a steady long-time limit. This limit corresponds to the ‘short-time’ incompressible flow prevailing after the attenuation of the pressure waves. The spatial nonuniformity of the asymptotic expansion in the neighbourhood of the waterline is briefly discussed. © Birkhäuser Verlag 1990 |
abstractGer |
Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is very short (e.g. impulsive motions). In the leading order the present problem is analogous to that of supersonic flow about a thin wing, thus the solution is represented by means of an appropriate ‘supersonic source’ distribution. Closed-form results are obtained for the case of impulsive motion (i.e. a “step function” velocity). The pressure field corresponds to systems of ‘double rarefaction’ and ‘double compression’ waves traversing the fluid domain intermittently. Following the passage of a rarefaction (compression) wave, the free surface becomes locally concave (convex). The resulting free surface profile consists of an elongating wavetrain in front of a ‘jet’ riding up the vertical wall. On the compressible time-scale the pressure and velocity fields approach a steady long-time limit. This limit corresponds to the ‘short-time’ incompressible flow prevailing after the attenuation of the pressure waves. The spatial nonuniformity of the asymptotic expansion in the neighbourhood of the waterline is briefly discussed. © Birkhäuser Verlag 1990 |
abstract_unstemmed |
Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is very short (e.g. impulsive motions). In the leading order the present problem is analogous to that of supersonic flow about a thin wing, thus the solution is represented by means of an appropriate ‘supersonic source’ distribution. Closed-form results are obtained for the case of impulsive motion (i.e. a “step function” velocity). The pressure field corresponds to systems of ‘double rarefaction’ and ‘double compression’ waves traversing the fluid domain intermittently. Following the passage of a rarefaction (compression) wave, the free surface becomes locally concave (convex). The resulting free surface profile consists of an elongating wavetrain in front of a ‘jet’ riding up the vertical wall. On the compressible time-scale the pressure and velocity fields approach a steady long-time limit. This limit corresponds to the ‘short-time’ incompressible flow prevailing after the attenuation of the pressure waves. The spatial nonuniformity of the asymptotic expansion in the neighbourhood of the waterline is briefly discussed. © Birkhäuser Verlag 1990 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2333 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Compressible flow induced by the transient motion of a wavemaker |
url |
https://doi.org/10.1007/BF00946098 |
remote_bool |
false |
ppnlink |
129474185 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00946098 |
up_date |
2024-07-03T22:45:41.782Z |
_version_ |
1803599732312899584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206960361X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323114958.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1990 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00946098</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206960361X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00946098-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Frankel, I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compressible flow induced by the transient motion of a wavemaker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1990</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag 1990</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effect of fluid compressibility on the evolution of the pressure distribution and free surface elevation, following the initiation of a horizontal motion of a vertical wavemaker, is analysed. This effect is significant even in a liquid (like water) when the time scale of the motion is very short (e.g. impulsive motions). In the leading order the present problem is analogous to that of supersonic flow about a thin wing, thus the solution is represented by means of an appropriate ‘supersonic source’ distribution. Closed-form results are obtained for the case of impulsive motion (i.e. a “step function” velocity). The pressure field corresponds to systems of ‘double rarefaction’ and ‘double compression’ waves traversing the fluid domain intermittently. Following the passage of a rarefaction (compression) wave, the free surface becomes locally concave (convex). The resulting free surface profile consists of an elongating wavetrain in front of a ‘jet’ riding up the vertical wall. On the compressible time-scale the pressure and velocity fields approach a steady long-time limit. This limit corresponds to the ‘short-time’ incompressible flow prevailing after the attenuation of the pressure waves. The spatial nonuniformity of the asymptotic expansion in the neighbourhood of the waterline is briefly discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface Elevation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supersonic Flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Horizontal Motion</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Zeitschrift für angewandte Mathematik und Physik</subfield><subfield code="d">Birkhäuser-Verlag, 1950</subfield><subfield code="g">41(1990), 5 vom: Sept., Seite 628-655</subfield><subfield code="w">(DE-627)129474185</subfield><subfield code="w">(DE-600)203013-5</subfield><subfield code="w">(DE-576)014852039</subfield><subfield code="x">0044-2275</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:1990</subfield><subfield code="g">number:5</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:628-655</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00946098</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">1990</subfield><subfield code="e">5</subfield><subfield code="c">09</subfield><subfield code="h">628-655</subfield></datafield></record></collection>
|
score |
7.401602 |