On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators
Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized S...
Ausführliche Beschreibung
Autor*in: |
Bojanic, R. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kluwer Academic Publishers 1999 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mathematica Hungarica - Kluwer Academic Publishers, 1983, 85(1999), 1-2 vom: März, Seite 29-57 |
---|---|
Übergeordnetes Werk: |
volume:85 ; year:1999 ; number:1-2 ; month:03 ; pages:29-57 |
Links: |
---|
DOI / URN: |
10.1023/A:1006612727274 |
---|
Katalog-ID: |
OLC2069888932 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2069888932 | ||
003 | DE-627 | ||
005 | 20230502201301.0 | ||
007 | tu | ||
008 | 200820s1999 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1006612727274 |2 doi | |
035 | |a (DE-627)OLC2069888932 | ||
035 | |a (DE-He213)A:1006612727274-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Bojanic, R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 1999 | ||
520 | |a Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized Shepard operators is almost always divergent. It is also shown that the sequence of Cesàro means of generalized Shepard operators is convergent everywhere for bounded functions which have only discontinuities of the first kind in [0,1]. | ||
650 | 4 | |a Bounded Function | |
650 | 4 | |a Continuity Point | |
650 | 4 | |a Shepard Operator | |
700 | 1 | |a della Vecchia, B. |4 aut | |
700 | 1 | |a Mastroianni, G. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mathematica Hungarica |d Kluwer Academic Publishers, 1983 |g 85(1999), 1-2 vom: März, Seite 29-57 |w (DE-627)130395986 |w (DE-600)602393-9 |w (DE-576)015898156 |x 0001-5954 |7 nnns |
773 | 1 | 8 | |g volume:85 |g year:1999 |g number:1-2 |g month:03 |g pages:29-57 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1006612727274 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 85 |j 1999 |e 1-2 |c 03 |h 29-57 |
author_variant |
r b rb v b d vb vbd g m gm |
---|---|
matchkey_str |
article:00015954:1999----::nhapoiainfonefntosihicniuteoteisknbg |
hierarchy_sort_str |
1999 |
publishDate |
1999 |
allfields |
10.1023/A:1006612727274 doi (DE-627)OLC2069888932 (DE-He213)A:1006612727274-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bojanic, R. verfasserin aut On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1999 Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized Shepard operators is almost always divergent. It is also shown that the sequence of Cesàro means of generalized Shepard operators is convergent everywhere for bounded functions which have only discontinuities of the first kind in [0,1]. Bounded Function Continuity Point Shepard Operator della Vecchia, B. aut Mastroianni, G. aut Enthalten in Acta mathematica Hungarica Kluwer Academic Publishers, 1983 85(1999), 1-2 vom: März, Seite 29-57 (DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 0001-5954 nnns volume:85 year:1999 number:1-2 month:03 pages:29-57 https://doi.org/10.1023/A:1006612727274 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4325 GBV_ILN_4700 AR 85 1999 1-2 03 29-57 |
spelling |
10.1023/A:1006612727274 doi (DE-627)OLC2069888932 (DE-He213)A:1006612727274-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bojanic, R. verfasserin aut On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1999 Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized Shepard operators is almost always divergent. It is also shown that the sequence of Cesàro means of generalized Shepard operators is convergent everywhere for bounded functions which have only discontinuities of the first kind in [0,1]. Bounded Function Continuity Point Shepard Operator della Vecchia, B. aut Mastroianni, G. aut Enthalten in Acta mathematica Hungarica Kluwer Academic Publishers, 1983 85(1999), 1-2 vom: März, Seite 29-57 (DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 0001-5954 nnns volume:85 year:1999 number:1-2 month:03 pages:29-57 https://doi.org/10.1023/A:1006612727274 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4325 GBV_ILN_4700 AR 85 1999 1-2 03 29-57 |
allfields_unstemmed |
10.1023/A:1006612727274 doi (DE-627)OLC2069888932 (DE-He213)A:1006612727274-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bojanic, R. verfasserin aut On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1999 Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized Shepard operators is almost always divergent. It is also shown that the sequence of Cesàro means of generalized Shepard operators is convergent everywhere for bounded functions which have only discontinuities of the first kind in [0,1]. Bounded Function Continuity Point Shepard Operator della Vecchia, B. aut Mastroianni, G. aut Enthalten in Acta mathematica Hungarica Kluwer Academic Publishers, 1983 85(1999), 1-2 vom: März, Seite 29-57 (DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 0001-5954 nnns volume:85 year:1999 number:1-2 month:03 pages:29-57 https://doi.org/10.1023/A:1006612727274 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4325 GBV_ILN_4700 AR 85 1999 1-2 03 29-57 |
allfieldsGer |
10.1023/A:1006612727274 doi (DE-627)OLC2069888932 (DE-He213)A:1006612727274-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bojanic, R. verfasserin aut On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1999 Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized Shepard operators is almost always divergent. It is also shown that the sequence of Cesàro means of generalized Shepard operators is convergent everywhere for bounded functions which have only discontinuities of the first kind in [0,1]. Bounded Function Continuity Point Shepard Operator della Vecchia, B. aut Mastroianni, G. aut Enthalten in Acta mathematica Hungarica Kluwer Academic Publishers, 1983 85(1999), 1-2 vom: März, Seite 29-57 (DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 0001-5954 nnns volume:85 year:1999 number:1-2 month:03 pages:29-57 https://doi.org/10.1023/A:1006612727274 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4325 GBV_ILN_4700 AR 85 1999 1-2 03 29-57 |
allfieldsSound |
10.1023/A:1006612727274 doi (DE-627)OLC2069888932 (DE-He213)A:1006612727274-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bojanic, R. verfasserin aut On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1999 Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized Shepard operators is almost always divergent. It is also shown that the sequence of Cesàro means of generalized Shepard operators is convergent everywhere for bounded functions which have only discontinuities of the first kind in [0,1]. Bounded Function Continuity Point Shepard Operator della Vecchia, B. aut Mastroianni, G. aut Enthalten in Acta mathematica Hungarica Kluwer Academic Publishers, 1983 85(1999), 1-2 vom: März, Seite 29-57 (DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 0001-5954 nnns volume:85 year:1999 number:1-2 month:03 pages:29-57 https://doi.org/10.1023/A:1006612727274 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4325 GBV_ILN_4700 AR 85 1999 1-2 03 29-57 |
language |
English |
source |
Enthalten in Acta mathematica Hungarica 85(1999), 1-2 vom: März, Seite 29-57 volume:85 year:1999 number:1-2 month:03 pages:29-57 |
sourceStr |
Enthalten in Acta mathematica Hungarica 85(1999), 1-2 vom: März, Seite 29-57 volume:85 year:1999 number:1-2 month:03 pages:29-57 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bounded Function Continuity Point Shepard Operator |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Acta mathematica Hungarica |
authorswithroles_txt_mv |
Bojanic, R. @@aut@@ della Vecchia, B. @@aut@@ Mastroianni, G. @@aut@@ |
publishDateDaySort_date |
1999-03-01T00:00:00Z |
hierarchy_top_id |
130395986 |
dewey-sort |
3510 |
id |
OLC2069888932 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069888932</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502201301.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1006612727274</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069888932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1006612727274-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bojanic, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized Shepard operators is almost always divergent. It is also shown that the sequence of Cesàro means of generalized Shepard operators is convergent everywhere for bounded functions which have only discontinuities of the first kind in [0,1].</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bounded Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuity Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shepard Operator</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">della Vecchia, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mastroianni, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica Hungarica</subfield><subfield code="d">Kluwer Academic Publishers, 1983</subfield><subfield code="g">85(1999), 1-2 vom: März, Seite 29-57</subfield><subfield code="w">(DE-627)130395986</subfield><subfield code="w">(DE-600)602393-9</subfield><subfield code="w">(DE-576)015898156</subfield><subfield code="x">0001-5954</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:85</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:29-57</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1006612727274</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">85</subfield><subfield code="j">1999</subfield><subfield code="e">1-2</subfield><subfield code="c">03</subfield><subfield code="h">29-57</subfield></datafield></record></collection>
|
author |
Bojanic, R. |
spellingShingle |
Bojanic, R. ddc 510 ssgn 17,1 misc Bounded Function misc Continuity Point misc Shepard Operator On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators |
authorStr |
Bojanic, R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130395986 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5954 |
topic_title |
510 VZ 17,1 ssgn On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators Bounded Function Continuity Point Shepard Operator |
topic |
ddc 510 ssgn 17,1 misc Bounded Function misc Continuity Point misc Shepard Operator |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Bounded Function misc Continuity Point misc Shepard Operator |
topic_browse |
ddc 510 ssgn 17,1 misc Bounded Function misc Continuity Point misc Shepard Operator |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mathematica Hungarica |
hierarchy_parent_id |
130395986 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Acta mathematica Hungarica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 |
title |
On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators |
ctrlnum |
(DE-627)OLC2069888932 (DE-He213)A:1006612727274-p |
title_full |
On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators |
author_sort |
Bojanic, R. |
journal |
Acta mathematica Hungarica |
journalStr |
Acta mathematica Hungarica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
29 |
author_browse |
Bojanic, R. della Vecchia, B. Mastroianni, G. |
container_volume |
85 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Bojanic, R. |
doi_str_mv |
10.1023/A:1006612727274 |
dewey-full |
510 |
title_sort |
on the approximation of bounded functions with discontinuities of the first kind by generalized shepard operators |
title_auth |
On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators |
abstract |
Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized Shepard operators is almost always divergent. It is also shown that the sequence of Cesàro means of generalized Shepard operators is convergent everywhere for bounded functions which have only discontinuities of the first kind in [0,1]. © Kluwer Academic Publishers 1999 |
abstractGer |
Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized Shepard operators is almost always divergent. It is also shown that the sequence of Cesàro means of generalized Shepard operators is convergent everywhere for bounded functions which have only discontinuities of the first kind in [0,1]. © Kluwer Academic Publishers 1999 |
abstract_unstemmed |
Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized Shepard operators is almost always divergent. It is also shown that the sequence of Cesàro means of generalized Shepard operators is convergent everywhere for bounded functions which have only discontinuities of the first kind in [0,1]. © Kluwer Academic Publishers 1999 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1-2 |
title_short |
On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators |
url |
https://doi.org/10.1023/A:1006612727274 |
remote_bool |
false |
author2 |
della Vecchia, B. Mastroianni, G. |
author2Str |
della Vecchia, B. Mastroianni, G. |
ppnlink |
130395986 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1006612727274 |
up_date |
2024-07-03T23:35:09.625Z |
_version_ |
1803602844321841152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069888932</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502201301.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1006612727274</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069888932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1006612727274-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bojanic, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The authors investigate the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators. Estimate for the rate of convergence at a continuity point is obtained, while at the points of discontinuity it is shown that the sequence of generalized Shepard operators is almost always divergent. It is also shown that the sequence of Cesàro means of generalized Shepard operators is convergent everywhere for bounded functions which have only discontinuities of the first kind in [0,1].</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bounded Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuity Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shepard Operator</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">della Vecchia, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mastroianni, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica Hungarica</subfield><subfield code="d">Kluwer Academic Publishers, 1983</subfield><subfield code="g">85(1999), 1-2 vom: März, Seite 29-57</subfield><subfield code="w">(DE-627)130395986</subfield><subfield code="w">(DE-600)602393-9</subfield><subfield code="w">(DE-576)015898156</subfield><subfield code="x">0001-5954</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:85</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:29-57</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1006612727274</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">85</subfield><subfield code="j">1999</subfield><subfield code="e">1-2</subfield><subfield code="c">03</subfield><subfield code="h">29-57</subfield></datafield></record></collection>
|
score |
7.400916 |