3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface
Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and stead...
Ausführliche Beschreibung
Autor*in: |
Kotenev, V. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© MAIK "Nauka/Interperiodica" 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Protection of metals - Nauka/Interperiodica, 1965, 41(2005), 6 vom: Nov., Seite 507-520 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2005 ; number:6 ; month:11 ; pages:507-520 |
Links: |
---|
DOI / URN: |
10.1007/s11124-005-0073-5 |
---|
Katalog-ID: |
OLC2069946754 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2069946754 | ||
003 | DE-627 | ||
005 | 20230513040122.0 | ||
007 | tu | ||
008 | 200820s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11124-005-0073-5 |2 doi | |
035 | |a (DE-627)OLC2069946754 | ||
035 | |a (DE-He213)s11124-005-0073-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Kotenev, V. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a 3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © MAIK "Nauka/Interperiodica" 2005 | ||
520 | |a Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and steady-state localized superficial domains (with different rates of the metal dissolution and complex formation processes). In this way, the originally unseen structure of the metal surface defects is visualized. The digital optical images obtained with a scanner for a small probed surface spot were processed in order to clarify the pitting nature of the metal dissolution in distilled water and visualize the latent defective metal structure. Local dissolution centers (pits) appear mainly in the first 10 to 20 min and determine the corrosion rate. The technique is highly sensitive to thin layers and, consequently, to the ions in solution. All these peculiarities make the measurements of the tangential non-uniformity of the layer at the studied spot of the electrode surface highly informative. The secondary precipitated layer of dissolution products can be considered as a distributed sensor layer immobilized at defects of the metal surface. Minor changes in the solution chemistry (pH, oxygen content, etc.) lead to the change in the dissolution rate and, hence, in the thickness, structure, and composition of the secondary precipitated sensor layer. | ||
650 | 4 | |a Corrosion Rate | |
650 | 4 | |a Probe Surface | |
650 | 4 | |a Metal Dissolution | |
650 | 4 | |a Sensor Layer | |
650 | 4 | |a Dissolution Product | |
700 | 1 | |a Petrunin, M. A. |4 aut | |
700 | 1 | |a Maksaeva, L. B. |4 aut | |
700 | 1 | |a Tsivadze, A. Yu. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Protection of metals |d Nauka/Interperiodica, 1965 |g 41(2005), 6 vom: Nov., Seite 507-520 |w (DE-627)129605905 |w (DE-600)242152-5 |w (DE-576)015100200 |x 0555-4896 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2005 |g number:6 |g month:11 |g pages:507-520 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11124-005-0073-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 41 |j 2005 |e 6 |c 11 |h 507-520 |
author_variant |
v a k va vak m a p ma map l b m lb lbm a y t ay ayt |
---|---|
matchkey_str |
article:05554896:2005----::diulztooteisltopoutoaeaiteerlcrdlyrt |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s11124-005-0073-5 doi (DE-627)OLC2069946754 (DE-He213)s11124-005-0073-5-p DE-627 ger DE-627 rakwb eng 670 VZ Kotenev, V. A. verfasserin aut 3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK "Nauka/Interperiodica" 2005 Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and steady-state localized superficial domains (with different rates of the metal dissolution and complex formation processes). In this way, the originally unseen structure of the metal surface defects is visualized. The digital optical images obtained with a scanner for a small probed surface spot were processed in order to clarify the pitting nature of the metal dissolution in distilled water and visualize the latent defective metal structure. Local dissolution centers (pits) appear mainly in the first 10 to 20 min and determine the corrosion rate. The technique is highly sensitive to thin layers and, consequently, to the ions in solution. All these peculiarities make the measurements of the tangential non-uniformity of the layer at the studied spot of the electrode surface highly informative. The secondary precipitated layer of dissolution products can be considered as a distributed sensor layer immobilized at defects of the metal surface. Minor changes in the solution chemistry (pH, oxygen content, etc.) lead to the change in the dissolution rate and, hence, in the thickness, structure, and composition of the secondary precipitated sensor layer. Corrosion Rate Probe Surface Metal Dissolution Sensor Layer Dissolution Product Petrunin, M. A. aut Maksaeva, L. B. aut Tsivadze, A. Yu. aut Enthalten in Protection of metals Nauka/Interperiodica, 1965 41(2005), 6 vom: Nov., Seite 507-520 (DE-627)129605905 (DE-600)242152-5 (DE-576)015100200 0555-4896 nnns volume:41 year:2005 number:6 month:11 pages:507-520 https://doi.org/10.1007/s11124-005-0073-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 41 2005 6 11 507-520 |
spelling |
10.1007/s11124-005-0073-5 doi (DE-627)OLC2069946754 (DE-He213)s11124-005-0073-5-p DE-627 ger DE-627 rakwb eng 670 VZ Kotenev, V. A. verfasserin aut 3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK "Nauka/Interperiodica" 2005 Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and steady-state localized superficial domains (with different rates of the metal dissolution and complex formation processes). In this way, the originally unseen structure of the metal surface defects is visualized. The digital optical images obtained with a scanner for a small probed surface spot were processed in order to clarify the pitting nature of the metal dissolution in distilled water and visualize the latent defective metal structure. Local dissolution centers (pits) appear mainly in the first 10 to 20 min and determine the corrosion rate. The technique is highly sensitive to thin layers and, consequently, to the ions in solution. All these peculiarities make the measurements of the tangential non-uniformity of the layer at the studied spot of the electrode surface highly informative. The secondary precipitated layer of dissolution products can be considered as a distributed sensor layer immobilized at defects of the metal surface. Minor changes in the solution chemistry (pH, oxygen content, etc.) lead to the change in the dissolution rate and, hence, in the thickness, structure, and composition of the secondary precipitated sensor layer. Corrosion Rate Probe Surface Metal Dissolution Sensor Layer Dissolution Product Petrunin, M. A. aut Maksaeva, L. B. aut Tsivadze, A. Yu. aut Enthalten in Protection of metals Nauka/Interperiodica, 1965 41(2005), 6 vom: Nov., Seite 507-520 (DE-627)129605905 (DE-600)242152-5 (DE-576)015100200 0555-4896 nnns volume:41 year:2005 number:6 month:11 pages:507-520 https://doi.org/10.1007/s11124-005-0073-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 41 2005 6 11 507-520 |
allfields_unstemmed |
10.1007/s11124-005-0073-5 doi (DE-627)OLC2069946754 (DE-He213)s11124-005-0073-5-p DE-627 ger DE-627 rakwb eng 670 VZ Kotenev, V. A. verfasserin aut 3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK "Nauka/Interperiodica" 2005 Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and steady-state localized superficial domains (with different rates of the metal dissolution and complex formation processes). In this way, the originally unseen structure of the metal surface defects is visualized. The digital optical images obtained with a scanner for a small probed surface spot were processed in order to clarify the pitting nature of the metal dissolution in distilled water and visualize the latent defective metal structure. Local dissolution centers (pits) appear mainly in the first 10 to 20 min and determine the corrosion rate. The technique is highly sensitive to thin layers and, consequently, to the ions in solution. All these peculiarities make the measurements of the tangential non-uniformity of the layer at the studied spot of the electrode surface highly informative. The secondary precipitated layer of dissolution products can be considered as a distributed sensor layer immobilized at defects of the metal surface. Minor changes in the solution chemistry (pH, oxygen content, etc.) lead to the change in the dissolution rate and, hence, in the thickness, structure, and composition of the secondary precipitated sensor layer. Corrosion Rate Probe Surface Metal Dissolution Sensor Layer Dissolution Product Petrunin, M. A. aut Maksaeva, L. B. aut Tsivadze, A. Yu. aut Enthalten in Protection of metals Nauka/Interperiodica, 1965 41(2005), 6 vom: Nov., Seite 507-520 (DE-627)129605905 (DE-600)242152-5 (DE-576)015100200 0555-4896 nnns volume:41 year:2005 number:6 month:11 pages:507-520 https://doi.org/10.1007/s11124-005-0073-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 41 2005 6 11 507-520 |
allfieldsGer |
10.1007/s11124-005-0073-5 doi (DE-627)OLC2069946754 (DE-He213)s11124-005-0073-5-p DE-627 ger DE-627 rakwb eng 670 VZ Kotenev, V. A. verfasserin aut 3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK "Nauka/Interperiodica" 2005 Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and steady-state localized superficial domains (with different rates of the metal dissolution and complex formation processes). In this way, the originally unseen structure of the metal surface defects is visualized. The digital optical images obtained with a scanner for a small probed surface spot were processed in order to clarify the pitting nature of the metal dissolution in distilled water and visualize the latent defective metal structure. Local dissolution centers (pits) appear mainly in the first 10 to 20 min and determine the corrosion rate. The technique is highly sensitive to thin layers and, consequently, to the ions in solution. All these peculiarities make the measurements of the tangential non-uniformity of the layer at the studied spot of the electrode surface highly informative. The secondary precipitated layer of dissolution products can be considered as a distributed sensor layer immobilized at defects of the metal surface. Minor changes in the solution chemistry (pH, oxygen content, etc.) lead to the change in the dissolution rate and, hence, in the thickness, structure, and composition of the secondary precipitated sensor layer. Corrosion Rate Probe Surface Metal Dissolution Sensor Layer Dissolution Product Petrunin, M. A. aut Maksaeva, L. B. aut Tsivadze, A. Yu. aut Enthalten in Protection of metals Nauka/Interperiodica, 1965 41(2005), 6 vom: Nov., Seite 507-520 (DE-627)129605905 (DE-600)242152-5 (DE-576)015100200 0555-4896 nnns volume:41 year:2005 number:6 month:11 pages:507-520 https://doi.org/10.1007/s11124-005-0073-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 41 2005 6 11 507-520 |
allfieldsSound |
10.1007/s11124-005-0073-5 doi (DE-627)OLC2069946754 (DE-He213)s11124-005-0073-5-p DE-627 ger DE-627 rakwb eng 670 VZ Kotenev, V. A. verfasserin aut 3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK "Nauka/Interperiodica" 2005 Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and steady-state localized superficial domains (with different rates of the metal dissolution and complex formation processes). In this way, the originally unseen structure of the metal surface defects is visualized. The digital optical images obtained with a scanner for a small probed surface spot were processed in order to clarify the pitting nature of the metal dissolution in distilled water and visualize the latent defective metal structure. Local dissolution centers (pits) appear mainly in the first 10 to 20 min and determine the corrosion rate. The technique is highly sensitive to thin layers and, consequently, to the ions in solution. All these peculiarities make the measurements of the tangential non-uniformity of the layer at the studied spot of the electrode surface highly informative. The secondary precipitated layer of dissolution products can be considered as a distributed sensor layer immobilized at defects of the metal surface. Minor changes in the solution chemistry (pH, oxygen content, etc.) lead to the change in the dissolution rate and, hence, in the thickness, structure, and composition of the secondary precipitated sensor layer. Corrosion Rate Probe Surface Metal Dissolution Sensor Layer Dissolution Product Petrunin, M. A. aut Maksaeva, L. B. aut Tsivadze, A. Yu. aut Enthalten in Protection of metals Nauka/Interperiodica, 1965 41(2005), 6 vom: Nov., Seite 507-520 (DE-627)129605905 (DE-600)242152-5 (DE-576)015100200 0555-4896 nnns volume:41 year:2005 number:6 month:11 pages:507-520 https://doi.org/10.1007/s11124-005-0073-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 41 2005 6 11 507-520 |
language |
English |
source |
Enthalten in Protection of metals 41(2005), 6 vom: Nov., Seite 507-520 volume:41 year:2005 number:6 month:11 pages:507-520 |
sourceStr |
Enthalten in Protection of metals 41(2005), 6 vom: Nov., Seite 507-520 volume:41 year:2005 number:6 month:11 pages:507-520 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Corrosion Rate Probe Surface Metal Dissolution Sensor Layer Dissolution Product |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Protection of metals |
authorswithroles_txt_mv |
Kotenev, V. A. @@aut@@ Petrunin, M. A. @@aut@@ Maksaeva, L. B. @@aut@@ Tsivadze, A. Yu. @@aut@@ |
publishDateDaySort_date |
2005-11-01T00:00:00Z |
hierarchy_top_id |
129605905 |
dewey-sort |
3670 |
id |
OLC2069946754 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069946754</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230513040122.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11124-005-0073-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069946754</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11124-005-0073-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kotenev, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK "Nauka/Interperiodica" 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and steady-state localized superficial domains (with different rates of the metal dissolution and complex formation processes). In this way, the originally unseen structure of the metal surface defects is visualized. The digital optical images obtained with a scanner for a small probed surface spot were processed in order to clarify the pitting nature of the metal dissolution in distilled water and visualize the latent defective metal structure. Local dissolution centers (pits) appear mainly in the first 10 to 20 min and determine the corrosion rate. The technique is highly sensitive to thin layers and, consequently, to the ions in solution. All these peculiarities make the measurements of the tangential non-uniformity of the layer at the studied spot of the electrode surface highly informative. The secondary precipitated layer of dissolution products can be considered as a distributed sensor layer immobilized at defects of the metal surface. Minor changes in the solution chemistry (pH, oxygen content, etc.) lead to the change in the dissolution rate and, hence, in the thickness, structure, and composition of the secondary precipitated sensor layer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probe Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal Dissolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensor Layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dissolution Product</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petrunin, M. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maksaeva, L. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsivadze, A. Yu.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Protection of metals</subfield><subfield code="d">Nauka/Interperiodica, 1965</subfield><subfield code="g">41(2005), 6 vom: Nov., Seite 507-520</subfield><subfield code="w">(DE-627)129605905</subfield><subfield code="w">(DE-600)242152-5</subfield><subfield code="w">(DE-576)015100200</subfield><subfield code="x">0555-4896</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:507-520</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11124-005-0073-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2005</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">507-520</subfield></datafield></record></collection>
|
author |
Kotenev, V. A. |
spellingShingle |
Kotenev, V. A. ddc 670 misc Corrosion Rate misc Probe Surface misc Metal Dissolution misc Sensor Layer misc Dissolution Product 3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface |
authorStr |
Kotenev, V. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129605905 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0555-4896 |
topic_title |
670 VZ 3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface Corrosion Rate Probe Surface Metal Dissolution Sensor Layer Dissolution Product |
topic |
ddc 670 misc Corrosion Rate misc Probe Surface misc Metal Dissolution misc Sensor Layer misc Dissolution Product |
topic_unstemmed |
ddc 670 misc Corrosion Rate misc Probe Surface misc Metal Dissolution misc Sensor Layer misc Dissolution Product |
topic_browse |
ddc 670 misc Corrosion Rate misc Probe Surface misc Metal Dissolution misc Sensor Layer misc Dissolution Product |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Protection of metals |
hierarchy_parent_id |
129605905 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Protection of metals |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129605905 (DE-600)242152-5 (DE-576)015100200 |
title |
3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface |
ctrlnum |
(DE-627)OLC2069946754 (DE-He213)s11124-005-0073-5-p |
title_full |
3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface |
author_sort |
Kotenev, V. A. |
journal |
Protection of metals |
journalStr |
Protection of metals |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
507 |
author_browse |
Kotenev, V. A. Petrunin, M. A. Maksaeva, L. B. Tsivadze, A. Yu. |
container_volume |
41 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Kotenev, V. A. |
doi_str_mv |
10.1007/s11124-005-0073-5 |
dewey-full |
670 |
title_sort |
3d visualization of the dissolution products of a metal in the near-electrode layer at the metal-solution interface |
title_auth |
3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface |
abstract |
Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and steady-state localized superficial domains (with different rates of the metal dissolution and complex formation processes). In this way, the originally unseen structure of the metal surface defects is visualized. The digital optical images obtained with a scanner for a small probed surface spot were processed in order to clarify the pitting nature of the metal dissolution in distilled water and visualize the latent defective metal structure. Local dissolution centers (pits) appear mainly in the first 10 to 20 min and determine the corrosion rate. The technique is highly sensitive to thin layers and, consequently, to the ions in solution. All these peculiarities make the measurements of the tangential non-uniformity of the layer at the studied spot of the electrode surface highly informative. The secondary precipitated layer of dissolution products can be considered as a distributed sensor layer immobilized at defects of the metal surface. Minor changes in the solution chemistry (pH, oxygen content, etc.) lead to the change in the dissolution rate and, hence, in the thickness, structure, and composition of the secondary precipitated sensor layer. © MAIK "Nauka/Interperiodica" 2005 |
abstractGer |
Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and steady-state localized superficial domains (with different rates of the metal dissolution and complex formation processes). In this way, the originally unseen structure of the metal surface defects is visualized. The digital optical images obtained with a scanner for a small probed surface spot were processed in order to clarify the pitting nature of the metal dissolution in distilled water and visualize the latent defective metal structure. Local dissolution centers (pits) appear mainly in the first 10 to 20 min and determine the corrosion rate. The technique is highly sensitive to thin layers and, consequently, to the ions in solution. All these peculiarities make the measurements of the tangential non-uniformity of the layer at the studied spot of the electrode surface highly informative. The secondary precipitated layer of dissolution products can be considered as a distributed sensor layer immobilized at defects of the metal surface. Minor changes in the solution chemistry (pH, oxygen content, etc.) lead to the change in the dissolution rate and, hence, in the thickness, structure, and composition of the secondary precipitated sensor layer. © MAIK "Nauka/Interperiodica" 2005 |
abstract_unstemmed |
Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and steady-state localized superficial domains (with different rates of the metal dissolution and complex formation processes). In this way, the originally unseen structure of the metal surface defects is visualized. The digital optical images obtained with a scanner for a small probed surface spot were processed in order to clarify the pitting nature of the metal dissolution in distilled water and visualize the latent defective metal structure. Local dissolution centers (pits) appear mainly in the first 10 to 20 min and determine the corrosion rate. The technique is highly sensitive to thin layers and, consequently, to the ions in solution. All these peculiarities make the measurements of the tangential non-uniformity of the layer at the studied spot of the electrode surface highly informative. The secondary precipitated layer of dissolution products can be considered as a distributed sensor layer immobilized at defects of the metal surface. Minor changes in the solution chemistry (pH, oxygen content, etc.) lead to the change in the dissolution rate and, hence, in the thickness, structure, and composition of the secondary precipitated sensor layer. © MAIK "Nauka/Interperiodica" 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
container_issue |
6 |
title_short |
3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface |
url |
https://doi.org/10.1007/s11124-005-0073-5 |
remote_bool |
false |
author2 |
Petrunin, M. A. Maksaeva, L. B. Tsivadze, A. Yu |
author2Str |
Petrunin, M. A. Maksaeva, L. B. Tsivadze, A. Yu |
ppnlink |
129605905 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11124-005-0073-5 |
up_date |
2024-07-03T23:44:28.488Z |
_version_ |
1803603430333218816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2069946754</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230513040122.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11124-005-0073-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2069946754</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11124-005-0073-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kotenev, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">3D Visualization of the Dissolution Products of a Metal in the Near-Electrode Layer at the Metal-Solution Interface</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK "Nauka/Interperiodica" 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A 3D profile of the layer of the metal dissolution products precipitated from a solution is reconstructed by means of reflectometry. Its nano-scale resolution in thickness enables one to investigate in situ the formation of micro- and nano-size adsorption islets, new phase nuclei, and steady-state localized superficial domains (with different rates of the metal dissolution and complex formation processes). In this way, the originally unseen structure of the metal surface defects is visualized. The digital optical images obtained with a scanner for a small probed surface spot were processed in order to clarify the pitting nature of the metal dissolution in distilled water and visualize the latent defective metal structure. Local dissolution centers (pits) appear mainly in the first 10 to 20 min and determine the corrosion rate. The technique is highly sensitive to thin layers and, consequently, to the ions in solution. All these peculiarities make the measurements of the tangential non-uniformity of the layer at the studied spot of the electrode surface highly informative. The secondary precipitated layer of dissolution products can be considered as a distributed sensor layer immobilized at defects of the metal surface. Minor changes in the solution chemistry (pH, oxygen content, etc.) lead to the change in the dissolution rate and, hence, in the thickness, structure, and composition of the secondary precipitated sensor layer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probe Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal Dissolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensor Layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dissolution Product</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petrunin, M. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maksaeva, L. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsivadze, A. Yu.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Protection of metals</subfield><subfield code="d">Nauka/Interperiodica, 1965</subfield><subfield code="g">41(2005), 6 vom: Nov., Seite 507-520</subfield><subfield code="w">(DE-627)129605905</subfield><subfield code="w">(DE-600)242152-5</subfield><subfield code="w">(DE-576)015100200</subfield><subfield code="x">0555-4896</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:507-520</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11124-005-0073-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2005</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">507-520</subfield></datafield></record></collection>
|
score |
7.4013643 |