Smoothness of Boundaries of Regular Sets
Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1.
Autor*in: |
Duarte, Pedro [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical imaging and vision - Springer US, 1992, 48(2012), 1 vom: 08. Nov., Seite 106-113 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2012 ; number:1 ; day:08 ; month:11 ; pages:106-113 |
Links: |
---|
DOI / URN: |
10.1007/s10851-012-0397-0 |
---|
Katalog-ID: |
OLC2070028178 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070028178 | ||
003 | DE-627 | ||
005 | 20230503120704.0 | ||
007 | tu | ||
008 | 200820s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10851-012-0397-0 |2 doi | |
035 | |a (DE-627)OLC2070028178 | ||
035 | |a (DE-He213)s10851-012-0397-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 31.00 |2 bkl | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Duarte, Pedro |e verfasserin |4 aut | |
245 | 1 | 0 | |a Smoothness of Boundaries of Regular Sets |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2012 | ||
520 | |a Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1. | ||
650 | 4 | |a -regularity | |
650 | 4 | |a -boundary | |
650 | 4 | |a Lipschitz projection | |
650 | 4 | |a Euclidean distance | |
700 | 1 | |a Torres, Maria Joana |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical imaging and vision |d Springer US, 1992 |g 48(2012), 1 vom: 08. Nov., Seite 106-113 |w (DE-627)13114278X |w (DE-600)1127403-7 |w (DE-576)038688964 |x 0924-9907 |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2012 |g number:1 |g day:08 |g month:11 |g pages:106-113 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10851-012-0397-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2409 | ||
936 | b | k | |a 31.00 |q VZ |
936 | b | k | |a 54.00 |q VZ |
951 | |a AR | ||
952 | |d 48 |j 2012 |e 1 |b 08 |c 11 |h 106-113 |
author_variant |
p d pd m j t mj mjt |
---|---|
matchkey_str |
article:09249907:2012----::mohesfonaisf |
hierarchy_sort_str |
2012 |
bklnumber |
31.00 54.00 |
publishDate |
2012 |
allfields |
10.1007/s10851-012-0397-0 doi (DE-627)OLC2070028178 (DE-He213)s10851-012-0397-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.00 bkl 54.00 bkl Duarte, Pedro verfasserin aut Smoothness of Boundaries of Regular Sets 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2012 Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1. -regularity -boundary Lipschitz projection Euclidean distance Torres, Maria Joana aut Enthalten in Journal of mathematical imaging and vision Springer US, 1992 48(2012), 1 vom: 08. Nov., Seite 106-113 (DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 0924-9907 nnns volume:48 year:2012 number:1 day:08 month:11 pages:106-113 https://doi.org/10.1007/s10851-012-0397-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2409 31.00 VZ 54.00 VZ AR 48 2012 1 08 11 106-113 |
spelling |
10.1007/s10851-012-0397-0 doi (DE-627)OLC2070028178 (DE-He213)s10851-012-0397-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.00 bkl 54.00 bkl Duarte, Pedro verfasserin aut Smoothness of Boundaries of Regular Sets 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2012 Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1. -regularity -boundary Lipschitz projection Euclidean distance Torres, Maria Joana aut Enthalten in Journal of mathematical imaging and vision Springer US, 1992 48(2012), 1 vom: 08. Nov., Seite 106-113 (DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 0924-9907 nnns volume:48 year:2012 number:1 day:08 month:11 pages:106-113 https://doi.org/10.1007/s10851-012-0397-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2409 31.00 VZ 54.00 VZ AR 48 2012 1 08 11 106-113 |
allfields_unstemmed |
10.1007/s10851-012-0397-0 doi (DE-627)OLC2070028178 (DE-He213)s10851-012-0397-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.00 bkl 54.00 bkl Duarte, Pedro verfasserin aut Smoothness of Boundaries of Regular Sets 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2012 Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1. -regularity -boundary Lipschitz projection Euclidean distance Torres, Maria Joana aut Enthalten in Journal of mathematical imaging and vision Springer US, 1992 48(2012), 1 vom: 08. Nov., Seite 106-113 (DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 0924-9907 nnns volume:48 year:2012 number:1 day:08 month:11 pages:106-113 https://doi.org/10.1007/s10851-012-0397-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2409 31.00 VZ 54.00 VZ AR 48 2012 1 08 11 106-113 |
allfieldsGer |
10.1007/s10851-012-0397-0 doi (DE-627)OLC2070028178 (DE-He213)s10851-012-0397-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.00 bkl 54.00 bkl Duarte, Pedro verfasserin aut Smoothness of Boundaries of Regular Sets 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2012 Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1. -regularity -boundary Lipschitz projection Euclidean distance Torres, Maria Joana aut Enthalten in Journal of mathematical imaging and vision Springer US, 1992 48(2012), 1 vom: 08. Nov., Seite 106-113 (DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 0924-9907 nnns volume:48 year:2012 number:1 day:08 month:11 pages:106-113 https://doi.org/10.1007/s10851-012-0397-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2409 31.00 VZ 54.00 VZ AR 48 2012 1 08 11 106-113 |
allfieldsSound |
10.1007/s10851-012-0397-0 doi (DE-627)OLC2070028178 (DE-He213)s10851-012-0397-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.00 bkl 54.00 bkl Duarte, Pedro verfasserin aut Smoothness of Boundaries of Regular Sets 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2012 Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1. -regularity -boundary Lipschitz projection Euclidean distance Torres, Maria Joana aut Enthalten in Journal of mathematical imaging and vision Springer US, 1992 48(2012), 1 vom: 08. Nov., Seite 106-113 (DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 0924-9907 nnns volume:48 year:2012 number:1 day:08 month:11 pages:106-113 https://doi.org/10.1007/s10851-012-0397-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2409 31.00 VZ 54.00 VZ AR 48 2012 1 08 11 106-113 |
language |
English |
source |
Enthalten in Journal of mathematical imaging and vision 48(2012), 1 vom: 08. Nov., Seite 106-113 volume:48 year:2012 number:1 day:08 month:11 pages:106-113 |
sourceStr |
Enthalten in Journal of mathematical imaging and vision 48(2012), 1 vom: 08. Nov., Seite 106-113 volume:48 year:2012 number:1 day:08 month:11 pages:106-113 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
-regularity -boundary Lipschitz projection Euclidean distance |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical imaging and vision |
authorswithroles_txt_mv |
Duarte, Pedro @@aut@@ Torres, Maria Joana @@aut@@ |
publishDateDaySort_date |
2012-11-08T00:00:00Z |
hierarchy_top_id |
13114278X |
dewey-sort |
3510 |
id |
OLC2070028178 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070028178</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503120704.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10851-012-0397-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070028178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10851-012-0397-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Duarte, Pedro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Smoothness of Boundaries of Regular Sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-regularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-boundary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipschitz projection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Euclidean distance</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Torres, Maria Joana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical imaging and vision</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">48(2012), 1 vom: 08. Nov., Seite 106-113</subfield><subfield code="w">(DE-627)13114278X</subfield><subfield code="w">(DE-600)1127403-7</subfield><subfield code="w">(DE-576)038688964</subfield><subfield code="x">0924-9907</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:106-113</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10851-012-0397-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">11</subfield><subfield code="h">106-113</subfield></datafield></record></collection>
|
author |
Duarte, Pedro |
spellingShingle |
Duarte, Pedro ddc 510 bkl 31.00 bkl 54.00 misc -regularity misc -boundary misc Lipschitz projection misc Euclidean distance Smoothness of Boundaries of Regular Sets |
authorStr |
Duarte, Pedro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13114278X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-9907 |
topic_title |
510 VZ 31.00 bkl 54.00 bkl Smoothness of Boundaries of Regular Sets -regularity -boundary Lipschitz projection Euclidean distance |
topic |
ddc 510 bkl 31.00 bkl 54.00 misc -regularity misc -boundary misc Lipschitz projection misc Euclidean distance |
topic_unstemmed |
ddc 510 bkl 31.00 bkl 54.00 misc -regularity misc -boundary misc Lipschitz projection misc Euclidean distance |
topic_browse |
ddc 510 bkl 31.00 bkl 54.00 misc -regularity misc -boundary misc Lipschitz projection misc Euclidean distance |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical imaging and vision |
hierarchy_parent_id |
13114278X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of mathematical imaging and vision |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 |
title |
Smoothness of Boundaries of Regular Sets |
ctrlnum |
(DE-627)OLC2070028178 (DE-He213)s10851-012-0397-0-p |
title_full |
Smoothness of Boundaries of Regular Sets |
author_sort |
Duarte, Pedro |
journal |
Journal of mathematical imaging and vision |
journalStr |
Journal of mathematical imaging and vision |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
106 |
author_browse |
Duarte, Pedro Torres, Maria Joana |
container_volume |
48 |
class |
510 VZ 31.00 bkl 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Duarte, Pedro |
doi_str_mv |
10.1007/s10851-012-0397-0 |
dewey-full |
510 |
title_sort |
smoothness of boundaries of regular sets |
title_auth |
Smoothness of Boundaries of Regular Sets |
abstract |
Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1. © Springer Science+Business Media New York 2012 |
abstractGer |
Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1. © Springer Science+Business Media New York 2012 |
abstract_unstemmed |
Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1. © Springer Science+Business Media New York 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2409 |
container_issue |
1 |
title_short |
Smoothness of Boundaries of Regular Sets |
url |
https://doi.org/10.1007/s10851-012-0397-0 |
remote_bool |
false |
author2 |
Torres, Maria Joana |
author2Str |
Torres, Maria Joana |
ppnlink |
13114278X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10851-012-0397-0 |
up_date |
2024-07-04T00:01:16.725Z |
_version_ |
1803604487544242176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070028178</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503120704.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10851-012-0397-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070028178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10851-012-0397-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Duarte, Pedro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Smoothness of Boundaries of Regular Sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that the boundary of an r-regular set is a codimension one manifold of class C1.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-regularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-boundary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipschitz projection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Euclidean distance</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Torres, Maria Joana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical imaging and vision</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">48(2012), 1 vom: 08. Nov., Seite 106-113</subfield><subfield code="w">(DE-627)13114278X</subfield><subfield code="w">(DE-600)1127403-7</subfield><subfield code="w">(DE-576)038688964</subfield><subfield code="x">0924-9907</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:106-113</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10851-012-0397-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">11</subfield><subfield code="h">106-113</subfield></datafield></record></collection>
|
score |
7.4007006 |