Comparing online algorithms for bin packing problems
Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative wor...
Ausführliche Beschreibung
Autor*in: |
Epstein, Leah [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2009 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of scheduling - Springer US, 1998, 15(2009), 1 vom: 12. Sept., Seite 13-21 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2009 ; number:1 ; day:12 ; month:09 ; pages:13-21 |
Links: |
---|
DOI / URN: |
10.1007/s10951-009-0129-5 |
---|
Katalog-ID: |
OLC2070216837 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070216837 | ||
003 | DE-627 | ||
005 | 20230503153502.0 | ||
007 | tu | ||
008 | 200819s2009 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10951-009-0129-5 |2 doi | |
035 | |a (DE-627)OLC2070216837 | ||
035 | |a (DE-He213)s10951-009-0129-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 650 |q VZ |
084 | |a 3,2 |a 11 |2 ssgn | ||
084 | |a 85.03$jMethoden und Techniken der Betriebswirtschaft |2 bkl | ||
084 | |a 54.80$jAngewandte Informatik |2 bkl | ||
084 | |a 31.80$jAngewandte Mathematik |2 bkl | ||
100 | 1 | |a Epstein, Leah |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparing online algorithms for bin packing problems |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2009 | ||
520 | |a Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair. | ||
650 | 4 | |a Online algorithms | |
650 | 4 | |a Relative worst-order ratio | |
650 | 4 | |a Bin packing | |
650 | 4 | |a Bin covering | |
650 | 4 | |a Bin coloring | |
650 | 4 | |a Class-constrained bin packing | |
650 | 4 | |a Open-end bin packing | |
700 | 1 | |a Favrholdt, Lene M. |4 aut | |
700 | 1 | |a Kohrt, Jens S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of scheduling |d Springer US, 1998 |g 15(2009), 1 vom: 12. Sept., Seite 13-21 |w (DE-627)302724184 |w (DE-600)1492486-9 |w (DE-576)080987206 |x 1094-6136 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2009 |g number:1 |g day:12 |g month:09 |g pages:13-21 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10951-009-0129-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4317 | ||
936 | b | k | |a 85.03$jMethoden und Techniken der Betriebswirtschaft |q VZ |0 106417320 |0 (DE-625)106417320 |
936 | b | k | |a 54.80$jAngewandte Informatik |q VZ |0 106417967 |0 (DE-625)106417967 |
936 | b | k | |a 31.80$jAngewandte Mathematik |q VZ |0 106419005 |0 (DE-625)106419005 |
951 | |a AR | ||
952 | |d 15 |j 2009 |e 1 |b 12 |c 09 |h 13-21 |
author_variant |
l e le l m f lm lmf j s k js jsk |
---|---|
matchkey_str |
article:10946136:2009----::oprnolnagrtmfrip |
hierarchy_sort_str |
2009 |
bklnumber |
85.03$jMethoden und Techniken der Betriebswirtschaft 54.80$jAngewandte Informatik 31.80$jAngewandte Mathematik |
publishDate |
2009 |
allfields |
10.1007/s10951-009-0129-5 doi (DE-627)OLC2070216837 (DE-He213)s10951-009-0129-5-p DE-627 ger DE-627 rakwb eng 650 VZ 3,2 11 ssgn 85.03$jMethoden und Techniken der Betriebswirtschaft bkl 54.80$jAngewandte Informatik bkl 31.80$jAngewandte Mathematik bkl Epstein, Leah verfasserin aut Comparing online algorithms for bin packing problems 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair. Online algorithms Relative worst-order ratio Bin packing Bin covering Bin coloring Class-constrained bin packing Open-end bin packing Favrholdt, Lene M. aut Kohrt, Jens S. aut Enthalten in Journal of scheduling Springer US, 1998 15(2009), 1 vom: 12. Sept., Seite 13-21 (DE-627)302724184 (DE-600)1492486-9 (DE-576)080987206 1094-6136 nnns volume:15 year:2009 number:1 day:12 month:09 pages:13-21 https://doi.org/10.1007/s10951-009-0129-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4029 GBV_ILN_4317 85.03$jMethoden und Techniken der Betriebswirtschaft VZ 106417320 (DE-625)106417320 54.80$jAngewandte Informatik VZ 106417967 (DE-625)106417967 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 15 2009 1 12 09 13-21 |
spelling |
10.1007/s10951-009-0129-5 doi (DE-627)OLC2070216837 (DE-He213)s10951-009-0129-5-p DE-627 ger DE-627 rakwb eng 650 VZ 3,2 11 ssgn 85.03$jMethoden und Techniken der Betriebswirtschaft bkl 54.80$jAngewandte Informatik bkl 31.80$jAngewandte Mathematik bkl Epstein, Leah verfasserin aut Comparing online algorithms for bin packing problems 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair. Online algorithms Relative worst-order ratio Bin packing Bin covering Bin coloring Class-constrained bin packing Open-end bin packing Favrholdt, Lene M. aut Kohrt, Jens S. aut Enthalten in Journal of scheduling Springer US, 1998 15(2009), 1 vom: 12. Sept., Seite 13-21 (DE-627)302724184 (DE-600)1492486-9 (DE-576)080987206 1094-6136 nnns volume:15 year:2009 number:1 day:12 month:09 pages:13-21 https://doi.org/10.1007/s10951-009-0129-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4029 GBV_ILN_4317 85.03$jMethoden und Techniken der Betriebswirtschaft VZ 106417320 (DE-625)106417320 54.80$jAngewandte Informatik VZ 106417967 (DE-625)106417967 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 15 2009 1 12 09 13-21 |
allfields_unstemmed |
10.1007/s10951-009-0129-5 doi (DE-627)OLC2070216837 (DE-He213)s10951-009-0129-5-p DE-627 ger DE-627 rakwb eng 650 VZ 3,2 11 ssgn 85.03$jMethoden und Techniken der Betriebswirtschaft bkl 54.80$jAngewandte Informatik bkl 31.80$jAngewandte Mathematik bkl Epstein, Leah verfasserin aut Comparing online algorithms for bin packing problems 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair. Online algorithms Relative worst-order ratio Bin packing Bin covering Bin coloring Class-constrained bin packing Open-end bin packing Favrholdt, Lene M. aut Kohrt, Jens S. aut Enthalten in Journal of scheduling Springer US, 1998 15(2009), 1 vom: 12. Sept., Seite 13-21 (DE-627)302724184 (DE-600)1492486-9 (DE-576)080987206 1094-6136 nnns volume:15 year:2009 number:1 day:12 month:09 pages:13-21 https://doi.org/10.1007/s10951-009-0129-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4029 GBV_ILN_4317 85.03$jMethoden und Techniken der Betriebswirtschaft VZ 106417320 (DE-625)106417320 54.80$jAngewandte Informatik VZ 106417967 (DE-625)106417967 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 15 2009 1 12 09 13-21 |
allfieldsGer |
10.1007/s10951-009-0129-5 doi (DE-627)OLC2070216837 (DE-He213)s10951-009-0129-5-p DE-627 ger DE-627 rakwb eng 650 VZ 3,2 11 ssgn 85.03$jMethoden und Techniken der Betriebswirtschaft bkl 54.80$jAngewandte Informatik bkl 31.80$jAngewandte Mathematik bkl Epstein, Leah verfasserin aut Comparing online algorithms for bin packing problems 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair. Online algorithms Relative worst-order ratio Bin packing Bin covering Bin coloring Class-constrained bin packing Open-end bin packing Favrholdt, Lene M. aut Kohrt, Jens S. aut Enthalten in Journal of scheduling Springer US, 1998 15(2009), 1 vom: 12. Sept., Seite 13-21 (DE-627)302724184 (DE-600)1492486-9 (DE-576)080987206 1094-6136 nnns volume:15 year:2009 number:1 day:12 month:09 pages:13-21 https://doi.org/10.1007/s10951-009-0129-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4029 GBV_ILN_4317 85.03$jMethoden und Techniken der Betriebswirtschaft VZ 106417320 (DE-625)106417320 54.80$jAngewandte Informatik VZ 106417967 (DE-625)106417967 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 15 2009 1 12 09 13-21 |
allfieldsSound |
10.1007/s10951-009-0129-5 doi (DE-627)OLC2070216837 (DE-He213)s10951-009-0129-5-p DE-627 ger DE-627 rakwb eng 650 VZ 3,2 11 ssgn 85.03$jMethoden und Techniken der Betriebswirtschaft bkl 54.80$jAngewandte Informatik bkl 31.80$jAngewandte Mathematik bkl Epstein, Leah verfasserin aut Comparing online algorithms for bin packing problems 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair. Online algorithms Relative worst-order ratio Bin packing Bin covering Bin coloring Class-constrained bin packing Open-end bin packing Favrholdt, Lene M. aut Kohrt, Jens S. aut Enthalten in Journal of scheduling Springer US, 1998 15(2009), 1 vom: 12. Sept., Seite 13-21 (DE-627)302724184 (DE-600)1492486-9 (DE-576)080987206 1094-6136 nnns volume:15 year:2009 number:1 day:12 month:09 pages:13-21 https://doi.org/10.1007/s10951-009-0129-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4029 GBV_ILN_4317 85.03$jMethoden und Techniken der Betriebswirtschaft VZ 106417320 (DE-625)106417320 54.80$jAngewandte Informatik VZ 106417967 (DE-625)106417967 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 15 2009 1 12 09 13-21 |
language |
English |
source |
Enthalten in Journal of scheduling 15(2009), 1 vom: 12. Sept., Seite 13-21 volume:15 year:2009 number:1 day:12 month:09 pages:13-21 |
sourceStr |
Enthalten in Journal of scheduling 15(2009), 1 vom: 12. Sept., Seite 13-21 volume:15 year:2009 number:1 day:12 month:09 pages:13-21 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Online algorithms Relative worst-order ratio Bin packing Bin covering Bin coloring Class-constrained bin packing Open-end bin packing |
dewey-raw |
650 |
isfreeaccess_bool |
false |
container_title |
Journal of scheduling |
authorswithroles_txt_mv |
Epstein, Leah @@aut@@ Favrholdt, Lene M. @@aut@@ Kohrt, Jens S. @@aut@@ |
publishDateDaySort_date |
2009-09-12T00:00:00Z |
hierarchy_top_id |
302724184 |
dewey-sort |
3650 |
id |
OLC2070216837 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070216837</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503153502.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10951-009-0129-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070216837</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10951-009-0129-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.03$jMethoden und Techniken der Betriebswirtschaft</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80$jAngewandte Informatik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Epstein, Leah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparing online algorithms for bin packing problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relative worst-order ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bin packing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bin covering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bin coloring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Class-constrained bin packing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Open-end bin packing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Favrholdt, Lene M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kohrt, Jens S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of scheduling</subfield><subfield code="d">Springer US, 1998</subfield><subfield code="g">15(2009), 1 vom: 12. Sept., Seite 13-21</subfield><subfield code="w">(DE-627)302724184</subfield><subfield code="w">(DE-600)1492486-9</subfield><subfield code="w">(DE-576)080987206</subfield><subfield code="x">1094-6136</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:13-21</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10951-009-0129-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.03$jMethoden und Techniken der Betriebswirtschaft</subfield><subfield code="q">VZ</subfield><subfield code="0">106417320</subfield><subfield code="0">(DE-625)106417320</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80$jAngewandte Informatik</subfield><subfield code="q">VZ</subfield><subfield code="0">106417967</subfield><subfield code="0">(DE-625)106417967</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419005</subfield><subfield code="0">(DE-625)106419005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">09</subfield><subfield code="h">13-21</subfield></datafield></record></collection>
|
author |
Epstein, Leah |
spellingShingle |
Epstein, Leah ddc 650 ssgn 3,2 bkl 85.03$jMethoden und Techniken der Betriebswirtschaft bkl 54.80$jAngewandte Informatik bkl 31.80$jAngewandte Mathematik misc Online algorithms misc Relative worst-order ratio misc Bin packing misc Bin covering misc Bin coloring misc Class-constrained bin packing misc Open-end bin packing Comparing online algorithms for bin packing problems |
authorStr |
Epstein, Leah |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302724184 |
format |
Article |
dewey-ones |
650 - Management & auxiliary services |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1094-6136 |
topic_title |
650 VZ 3,2 11 ssgn 85.03$jMethoden und Techniken der Betriebswirtschaft bkl 54.80$jAngewandte Informatik bkl 31.80$jAngewandte Mathematik bkl Comparing online algorithms for bin packing problems Online algorithms Relative worst-order ratio Bin packing Bin covering Bin coloring Class-constrained bin packing Open-end bin packing |
topic |
ddc 650 ssgn 3,2 bkl 85.03$jMethoden und Techniken der Betriebswirtschaft bkl 54.80$jAngewandte Informatik bkl 31.80$jAngewandte Mathematik misc Online algorithms misc Relative worst-order ratio misc Bin packing misc Bin covering misc Bin coloring misc Class-constrained bin packing misc Open-end bin packing |
topic_unstemmed |
ddc 650 ssgn 3,2 bkl 85.03$jMethoden und Techniken der Betriebswirtschaft bkl 54.80$jAngewandte Informatik bkl 31.80$jAngewandte Mathematik misc Online algorithms misc Relative worst-order ratio misc Bin packing misc Bin covering misc Bin coloring misc Class-constrained bin packing misc Open-end bin packing |
topic_browse |
ddc 650 ssgn 3,2 bkl 85.03$jMethoden und Techniken der Betriebswirtschaft bkl 54.80$jAngewandte Informatik bkl 31.80$jAngewandte Mathematik misc Online algorithms misc Relative worst-order ratio misc Bin packing misc Bin covering misc Bin coloring misc Class-constrained bin packing misc Open-end bin packing |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of scheduling |
hierarchy_parent_id |
302724184 |
dewey-tens |
650 - Management & public relations |
hierarchy_top_title |
Journal of scheduling |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302724184 (DE-600)1492486-9 (DE-576)080987206 |
title |
Comparing online algorithms for bin packing problems |
ctrlnum |
(DE-627)OLC2070216837 (DE-He213)s10951-009-0129-5-p |
title_full |
Comparing online algorithms for bin packing problems |
author_sort |
Epstein, Leah |
journal |
Journal of scheduling |
journalStr |
Journal of scheduling |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
13 |
author_browse |
Epstein, Leah Favrholdt, Lene M. Kohrt, Jens S. |
container_volume |
15 |
class |
650 VZ 3,2 11 ssgn 85.03$jMethoden und Techniken der Betriebswirtschaft bkl 54.80$jAngewandte Informatik bkl 31.80$jAngewandte Mathematik bkl |
format_se |
Aufsätze |
author-letter |
Epstein, Leah |
doi_str_mv |
10.1007/s10951-009-0129-5 |
normlink |
106417320 106417967 106419005 |
normlink_prefix_str_mv |
106417320 (DE-625)106417320 106417967 (DE-625)106417967 106419005 (DE-625)106419005 |
dewey-full |
650 |
title_sort |
comparing online algorithms for bin packing problems |
title_auth |
Comparing online algorithms for bin packing problems |
abstract |
Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair. © Springer Science+Business Media, LLC 2009 |
abstractGer |
Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair. © Springer Science+Business Media, LLC 2009 |
abstract_unstemmed |
Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair. © Springer Science+Business Media, LLC 2009 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4029 GBV_ILN_4317 |
container_issue |
1 |
title_short |
Comparing online algorithms for bin packing problems |
url |
https://doi.org/10.1007/s10951-009-0129-5 |
remote_bool |
false |
author2 |
Favrholdt, Lene M. Kohrt, Jens S. |
author2Str |
Favrholdt, Lene M. Kohrt, Jens S. |
ppnlink |
302724184 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10951-009-0129-5 |
up_date |
2024-07-04T00:36:29.913Z |
_version_ |
1803606703401336832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070216837</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503153502.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10951-009-0129-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070216837</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10951-009-0129-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.03$jMethoden und Techniken der Betriebswirtschaft</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80$jAngewandte Informatik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Epstein, Leah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparing online algorithms for bin packing problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relative worst-order ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bin packing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bin covering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bin coloring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Class-constrained bin packing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Open-end bin packing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Favrholdt, Lene M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kohrt, Jens S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of scheduling</subfield><subfield code="d">Springer US, 1998</subfield><subfield code="g">15(2009), 1 vom: 12. Sept., Seite 13-21</subfield><subfield code="w">(DE-627)302724184</subfield><subfield code="w">(DE-600)1492486-9</subfield><subfield code="w">(DE-576)080987206</subfield><subfield code="x">1094-6136</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:13-21</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10951-009-0129-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.03$jMethoden und Techniken der Betriebswirtschaft</subfield><subfield code="q">VZ</subfield><subfield code="0">106417320</subfield><subfield code="0">(DE-625)106417320</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80$jAngewandte Informatik</subfield><subfield code="q">VZ</subfield><subfield code="0">106417967</subfield><subfield code="0">(DE-625)106417967</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419005</subfield><subfield code="0">(DE-625)106419005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">09</subfield><subfield code="h">13-21</subfield></datafield></record></collection>
|
score |
7.399315 |