Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1
Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was obs...
Ausführliche Beschreibung
Autor*in: |
Saitoh, H. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of fusion energy - Springer US, 1981, 29(2010), 6 vom: 06. Sept., Seite 553-557 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2010 ; number:6 ; day:06 ; month:09 ; pages:553-557 |
Links: |
---|
DOI / URN: |
10.1007/s10894-010-9327-6 |
---|
Katalog-ID: |
OLC2070456900 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070456900 | ||
003 | DE-627 | ||
005 | 20230503140822.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10894-010-9327-6 |2 doi | |
035 | |a (DE-627)OLC2070456900 | ||
035 | |a (DE-He213)s10894-010-9327-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Saitoh, H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2010 | ||
520 | |a Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was observed by an X-ray CCD camera. The coil support structure is the main loss route of the hot electrons, and higher-β discharge is realized by coil levitation. Confinement properties of charged particles in the magnetospheric configuration were investigated by using toroidal non-neutral plasma. Fluctuation-induced inward particle diffusion into the strong magnetic field region was realized due to the onset of diocotron (Kelvin–Helmholtz) instability. | ||
650 | 4 | |a Magnetospheric configuration | |
650 | 4 | |a Dipole confinement | |
650 | 4 | |a High-β plasma | |
650 | 4 | |a Non-neutral plasma | |
700 | 1 | |a Yoshida, Z. |4 aut | |
700 | 1 | |a Morikawa, J. |4 aut | |
700 | 1 | |a Yano, Y. |4 aut | |
700 | 1 | |a Mizushima, T. |4 aut | |
700 | 1 | |a Kobayashi, M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of fusion energy |d Springer US, 1981 |g 29(2010), 6 vom: 06. Sept., Seite 553-557 |w (DE-627)130512575 |w (DE-600)764392-5 |w (DE-576)016085973 |x 0164-0313 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2010 |g number:6 |g day:06 |g month:09 |g pages:553-557 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10894-010-9327-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 33.00 |q VZ |
951 | |a AR | ||
952 | |d 29 |j 2010 |e 6 |b 06 |c 09 |h 553-557 |
author_variant |
h s hs z y zy j m jm y y yy t m tm m k mk |
---|---|
matchkey_str |
article:01640313:2010----::omtoohgehlsaniwrpri |
hierarchy_sort_str |
2010 |
bklnumber |
33.00 |
publishDate |
2010 |
allfields |
10.1007/s10894-010-9327-6 doi (DE-627)OLC2070456900 (DE-He213)s10894-010-9327-6-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Saitoh, H. verfasserin aut Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was observed by an X-ray CCD camera. The coil support structure is the main loss route of the hot electrons, and higher-β discharge is realized by coil levitation. Confinement properties of charged particles in the magnetospheric configuration were investigated by using toroidal non-neutral plasma. Fluctuation-induced inward particle diffusion into the strong magnetic field region was realized due to the onset of diocotron (Kelvin–Helmholtz) instability. Magnetospheric configuration Dipole confinement High-β plasma Non-neutral plasma Yoshida, Z. aut Morikawa, J. aut Yano, Y. aut Mizushima, T. aut Kobayashi, M. aut Enthalten in Journal of fusion energy Springer US, 1981 29(2010), 6 vom: 06. Sept., Seite 553-557 (DE-627)130512575 (DE-600)764392-5 (DE-576)016085973 0164-0313 nnns volume:29 year:2010 number:6 day:06 month:09 pages:553-557 https://doi.org/10.1007/s10894-010-9327-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 29 2010 6 06 09 553-557 |
spelling |
10.1007/s10894-010-9327-6 doi (DE-627)OLC2070456900 (DE-He213)s10894-010-9327-6-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Saitoh, H. verfasserin aut Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was observed by an X-ray CCD camera. The coil support structure is the main loss route of the hot electrons, and higher-β discharge is realized by coil levitation. Confinement properties of charged particles in the magnetospheric configuration were investigated by using toroidal non-neutral plasma. Fluctuation-induced inward particle diffusion into the strong magnetic field region was realized due to the onset of diocotron (Kelvin–Helmholtz) instability. Magnetospheric configuration Dipole confinement High-β plasma Non-neutral plasma Yoshida, Z. aut Morikawa, J. aut Yano, Y. aut Mizushima, T. aut Kobayashi, M. aut Enthalten in Journal of fusion energy Springer US, 1981 29(2010), 6 vom: 06. Sept., Seite 553-557 (DE-627)130512575 (DE-600)764392-5 (DE-576)016085973 0164-0313 nnns volume:29 year:2010 number:6 day:06 month:09 pages:553-557 https://doi.org/10.1007/s10894-010-9327-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 29 2010 6 06 09 553-557 |
allfields_unstemmed |
10.1007/s10894-010-9327-6 doi (DE-627)OLC2070456900 (DE-He213)s10894-010-9327-6-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Saitoh, H. verfasserin aut Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was observed by an X-ray CCD camera. The coil support structure is the main loss route of the hot electrons, and higher-β discharge is realized by coil levitation. Confinement properties of charged particles in the magnetospheric configuration were investigated by using toroidal non-neutral plasma. Fluctuation-induced inward particle diffusion into the strong magnetic field region was realized due to the onset of diocotron (Kelvin–Helmholtz) instability. Magnetospheric configuration Dipole confinement High-β plasma Non-neutral plasma Yoshida, Z. aut Morikawa, J. aut Yano, Y. aut Mizushima, T. aut Kobayashi, M. aut Enthalten in Journal of fusion energy Springer US, 1981 29(2010), 6 vom: 06. Sept., Seite 553-557 (DE-627)130512575 (DE-600)764392-5 (DE-576)016085973 0164-0313 nnns volume:29 year:2010 number:6 day:06 month:09 pages:553-557 https://doi.org/10.1007/s10894-010-9327-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 29 2010 6 06 09 553-557 |
allfieldsGer |
10.1007/s10894-010-9327-6 doi (DE-627)OLC2070456900 (DE-He213)s10894-010-9327-6-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Saitoh, H. verfasserin aut Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was observed by an X-ray CCD camera. The coil support structure is the main loss route of the hot electrons, and higher-β discharge is realized by coil levitation. Confinement properties of charged particles in the magnetospheric configuration were investigated by using toroidal non-neutral plasma. Fluctuation-induced inward particle diffusion into the strong magnetic field region was realized due to the onset of diocotron (Kelvin–Helmholtz) instability. Magnetospheric configuration Dipole confinement High-β plasma Non-neutral plasma Yoshida, Z. aut Morikawa, J. aut Yano, Y. aut Mizushima, T. aut Kobayashi, M. aut Enthalten in Journal of fusion energy Springer US, 1981 29(2010), 6 vom: 06. Sept., Seite 553-557 (DE-627)130512575 (DE-600)764392-5 (DE-576)016085973 0164-0313 nnns volume:29 year:2010 number:6 day:06 month:09 pages:553-557 https://doi.org/10.1007/s10894-010-9327-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 29 2010 6 06 09 553-557 |
allfieldsSound |
10.1007/s10894-010-9327-6 doi (DE-627)OLC2070456900 (DE-He213)s10894-010-9327-6-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Saitoh, H. verfasserin aut Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was observed by an X-ray CCD camera. The coil support structure is the main loss route of the hot electrons, and higher-β discharge is realized by coil levitation. Confinement properties of charged particles in the magnetospheric configuration were investigated by using toroidal non-neutral plasma. Fluctuation-induced inward particle diffusion into the strong magnetic field region was realized due to the onset of diocotron (Kelvin–Helmholtz) instability. Magnetospheric configuration Dipole confinement High-β plasma Non-neutral plasma Yoshida, Z. aut Morikawa, J. aut Yano, Y. aut Mizushima, T. aut Kobayashi, M. aut Enthalten in Journal of fusion energy Springer US, 1981 29(2010), 6 vom: 06. Sept., Seite 553-557 (DE-627)130512575 (DE-600)764392-5 (DE-576)016085973 0164-0313 nnns volume:29 year:2010 number:6 day:06 month:09 pages:553-557 https://doi.org/10.1007/s10894-010-9327-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 29 2010 6 06 09 553-557 |
language |
English |
source |
Enthalten in Journal of fusion energy 29(2010), 6 vom: 06. Sept., Seite 553-557 volume:29 year:2010 number:6 day:06 month:09 pages:553-557 |
sourceStr |
Enthalten in Journal of fusion energy 29(2010), 6 vom: 06. Sept., Seite 553-557 volume:29 year:2010 number:6 day:06 month:09 pages:553-557 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Magnetospheric configuration Dipole confinement High-β plasma Non-neutral plasma |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of fusion energy |
authorswithroles_txt_mv |
Saitoh, H. @@aut@@ Yoshida, Z. @@aut@@ Morikawa, J. @@aut@@ Yano, Y. @@aut@@ Mizushima, T. @@aut@@ Kobayashi, M. @@aut@@ |
publishDateDaySort_date |
2010-09-06T00:00:00Z |
hierarchy_top_id |
130512575 |
dewey-sort |
3530 |
id |
OLC2070456900 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070456900</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503140822.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10894-010-9327-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070456900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10894-010-9327-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saitoh, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was observed by an X-ray CCD camera. The coil support structure is the main loss route of the hot electrons, and higher-β discharge is realized by coil levitation. Confinement properties of charged particles in the magnetospheric configuration were investigated by using toroidal non-neutral plasma. Fluctuation-induced inward particle diffusion into the strong magnetic field region was realized due to the onset of diocotron (Kelvin–Helmholtz) instability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetospheric configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dipole confinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-β plasma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-neutral plasma</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshida, Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morikawa, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yano, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mizushima, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kobayashi, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of fusion energy</subfield><subfield code="d">Springer US, 1981</subfield><subfield code="g">29(2010), 6 vom: 06. Sept., Seite 553-557</subfield><subfield code="w">(DE-627)130512575</subfield><subfield code="w">(DE-600)764392-5</subfield><subfield code="w">(DE-576)016085973</subfield><subfield code="x">0164-0313</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:6</subfield><subfield code="g">day:06</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:553-557</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10894-010-9327-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2010</subfield><subfield code="e">6</subfield><subfield code="b">06</subfield><subfield code="c">09</subfield><subfield code="h">553-557</subfield></datafield></record></collection>
|
author |
Saitoh, H. |
spellingShingle |
Saitoh, H. ddc 530 bkl 33.00 misc Magnetospheric configuration misc Dipole confinement misc High-β plasma misc Non-neutral plasma Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 |
authorStr |
Saitoh, H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130512575 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0164-0313 |
topic_title |
530 VZ 33.00 bkl Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 Magnetospheric configuration Dipole confinement High-β plasma Non-neutral plasma |
topic |
ddc 530 bkl 33.00 misc Magnetospheric configuration misc Dipole confinement misc High-β plasma misc Non-neutral plasma |
topic_unstemmed |
ddc 530 bkl 33.00 misc Magnetospheric configuration misc Dipole confinement misc High-β plasma misc Non-neutral plasma |
topic_browse |
ddc 530 bkl 33.00 misc Magnetospheric configuration misc Dipole confinement misc High-β plasma misc Non-neutral plasma |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of fusion energy |
hierarchy_parent_id |
130512575 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of fusion energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130512575 (DE-600)764392-5 (DE-576)016085973 |
title |
Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 |
ctrlnum |
(DE-627)OLC2070456900 (DE-He213)s10894-010-9327-6-p |
title_full |
Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 |
author_sort |
Saitoh, H. |
journal |
Journal of fusion energy |
journalStr |
Journal of fusion energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
553 |
author_browse |
Saitoh, H. Yoshida, Z. Morikawa, J. Yano, Y. Mizushima, T. Kobayashi, M. |
container_volume |
29 |
class |
530 VZ 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Saitoh, H. |
doi_str_mv |
10.1007/s10894-010-9327-6 |
dewey-full |
530 |
title_sort |
formation of high-β ech plasma and inward particle diffusion in rt-1 |
title_auth |
Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 |
abstract |
Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was observed by an X-ray CCD camera. The coil support structure is the main loss route of the hot electrons, and higher-β discharge is realized by coil levitation. Confinement properties of charged particles in the magnetospheric configuration were investigated by using toroidal non-neutral plasma. Fluctuation-induced inward particle diffusion into the strong magnetic field region was realized due to the onset of diocotron (Kelvin–Helmholtz) instability. © Springer Science+Business Media, LLC 2010 |
abstractGer |
Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was observed by an X-ray CCD camera. The coil support structure is the main loss route of the hot electrons, and higher-β discharge is realized by coil levitation. Confinement properties of charged particles in the magnetospheric configuration were investigated by using toroidal non-neutral plasma. Fluctuation-induced inward particle diffusion into the strong magnetic field region was realized due to the onset of diocotron (Kelvin–Helmholtz) instability. © Springer Science+Business Media, LLC 2010 |
abstract_unstemmed |
Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was observed by an X-ray CCD camera. The coil support structure is the main loss route of the hot electrons, and higher-β discharge is realized by coil levitation. Confinement properties of charged particles in the magnetospheric configuration were investigated by using toroidal non-neutral plasma. Fluctuation-induced inward particle diffusion into the strong magnetic field region was realized due to the onset of diocotron (Kelvin–Helmholtz) instability. © Springer Science+Business Media, LLC 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
6 |
title_short |
Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1 |
url |
https://doi.org/10.1007/s10894-010-9327-6 |
remote_bool |
false |
author2 |
Yoshida, Z. Morikawa, J. Yano, Y. Mizushima, T. Kobayashi, M. |
author2Str |
Yoshida, Z. Morikawa, J. Yano, Y. Mizushima, T. Kobayashi, M. |
ppnlink |
130512575 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10894-010-9327-6 |
up_date |
2024-07-04T01:21:41.782Z |
_version_ |
1803609546982162432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070456900</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503140822.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10894-010-9327-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070456900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10894-010-9327-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saitoh, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Formation of High-β ECH Plasma and Inward Particle Diffusion in RT-1</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract High-β plasma is stably confined in the Ring Trap 1 (RT-1) device, a magnetospheric configuration with a levitated dipole field magnet. The plasma pressure is mainly resulted from high temperature electrons generated by electron cyclotron resonance heating (ECH), whose bremsstrulung was observed by an X-ray CCD camera. The coil support structure is the main loss route of the hot electrons, and higher-β discharge is realized by coil levitation. Confinement properties of charged particles in the magnetospheric configuration were investigated by using toroidal non-neutral plasma. Fluctuation-induced inward particle diffusion into the strong magnetic field region was realized due to the onset of diocotron (Kelvin–Helmholtz) instability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetospheric configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dipole confinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-β plasma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-neutral plasma</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshida, Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morikawa, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yano, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mizushima, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kobayashi, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of fusion energy</subfield><subfield code="d">Springer US, 1981</subfield><subfield code="g">29(2010), 6 vom: 06. Sept., Seite 553-557</subfield><subfield code="w">(DE-627)130512575</subfield><subfield code="w">(DE-600)764392-5</subfield><subfield code="w">(DE-576)016085973</subfield><subfield code="x">0164-0313</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:6</subfield><subfield code="g">day:06</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:553-557</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10894-010-9327-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2010</subfield><subfield code="e">6</subfield><subfield code="b">06</subfield><subfield code="c">09</subfield><subfield code="h">553-557</subfield></datafield></record></collection>
|
score |
7.4000034 |