Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A.
Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocr...
Ausführliche Beschreibung
Autor*in: |
Doe, Bruce R. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1969 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 1969 |
---|
Übergeordnetes Werk: |
Enthalten in: Contributions to mineralogy and petrology - Springer-Verlag, 1966, 21(1969), 2 vom: März, Seite 142-156 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:1969 ; number:2 ; month:03 ; pages:142-156 |
Links: |
---|
DOI / URN: |
10.1007/BF00403342 |
---|
Katalog-ID: |
OLC2070480119 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070480119 | ||
003 | DE-627 | ||
005 | 20230402223648.0 | ||
007 | tu | ||
008 | 200820s1969 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00403342 |2 doi | |
035 | |a (DE-627)OLC2070480119 | ||
035 | |a (DE-He213)BF00403342-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 13 |2 ssgn | ||
084 | |a TE 1000 |q VZ |2 rvk | ||
100 | 1 | |a Doe, Bruce R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. |
264 | 1 | |c 1969 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1969 | ||
520 | |a Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, $ K_{2} $O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. $ K_{2} $O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% $ K_{2} $O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios. The primitive basalts have: 206Pb/204Pb ∼ 18.09–18.34, 207Pb/204Pb ∼ 15.5, 208Pb/204Pb ∼ 37.6–37.9, 87Sr/86Sr ∼ 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises. | ||
650 | 4 | |a Strontium | |
650 | 4 | |a Thorium | |
650 | 4 | |a Lead Isotope | |
650 | 4 | |a Crustal Rock | |
650 | 4 | |a Strontium Isotope | |
700 | 1 | |a Lipman, Peter W. |4 aut | |
700 | 1 | |a Hedge, Carl E. |4 aut | |
700 | 1 | |a Kurasawa, Hajime |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Contributions to mineralogy and petrology |d Springer-Verlag, 1966 |g 21(1969), 2 vom: März, Seite 142-156 |w (DE-627)129068721 |w (DE-600)1616-0 |w (DE-576)014400367 |x 0010-7999 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:1969 |g number:2 |g month:03 |g pages:142-156 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00403342 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4028 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4302 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4320 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a TE 1000 |
951 | |a AR | ||
952 | |d 21 |j 1969 |e 2 |c 03 |h 142-156 |
author_variant |
b r d br brd p w l pw pwl c e h ce ceh h k hk |
---|---|
matchkey_str |
article:00107999:1969----::rmtvadotmntdaatfoteote |
hierarchy_sort_str |
1969 |
publishDate |
1969 |
allfields |
10.1007/BF00403342 doi (DE-627)OLC2070480119 (DE-He213)BF00403342-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Doe, Bruce R. verfasserin aut Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. 1969 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1969 Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, $ K_{2} $O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. $ K_{2} $O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% $ K_{2} $O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios. The primitive basalts have: 206Pb/204Pb ∼ 18.09–18.34, 207Pb/204Pb ∼ 15.5, 208Pb/204Pb ∼ 37.6–37.9, 87Sr/86Sr ∼ 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises. Strontium Thorium Lead Isotope Crustal Rock Strontium Isotope Lipman, Peter W. aut Hedge, Carl E. aut Kurasawa, Hajime aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 21(1969), 2 vom: März, Seite 142-156 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:21 year:1969 number:2 month:03 pages:142-156 https://doi.org/10.1007/BF00403342 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2001 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 TE 1000 AR 21 1969 2 03 142-156 |
spelling |
10.1007/BF00403342 doi (DE-627)OLC2070480119 (DE-He213)BF00403342-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Doe, Bruce R. verfasserin aut Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. 1969 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1969 Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, $ K_{2} $O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. $ K_{2} $O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% $ K_{2} $O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios. The primitive basalts have: 206Pb/204Pb ∼ 18.09–18.34, 207Pb/204Pb ∼ 15.5, 208Pb/204Pb ∼ 37.6–37.9, 87Sr/86Sr ∼ 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises. Strontium Thorium Lead Isotope Crustal Rock Strontium Isotope Lipman, Peter W. aut Hedge, Carl E. aut Kurasawa, Hajime aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 21(1969), 2 vom: März, Seite 142-156 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:21 year:1969 number:2 month:03 pages:142-156 https://doi.org/10.1007/BF00403342 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2001 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 TE 1000 AR 21 1969 2 03 142-156 |
allfields_unstemmed |
10.1007/BF00403342 doi (DE-627)OLC2070480119 (DE-He213)BF00403342-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Doe, Bruce R. verfasserin aut Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. 1969 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1969 Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, $ K_{2} $O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. $ K_{2} $O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% $ K_{2} $O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios. The primitive basalts have: 206Pb/204Pb ∼ 18.09–18.34, 207Pb/204Pb ∼ 15.5, 208Pb/204Pb ∼ 37.6–37.9, 87Sr/86Sr ∼ 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises. Strontium Thorium Lead Isotope Crustal Rock Strontium Isotope Lipman, Peter W. aut Hedge, Carl E. aut Kurasawa, Hajime aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 21(1969), 2 vom: März, Seite 142-156 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:21 year:1969 number:2 month:03 pages:142-156 https://doi.org/10.1007/BF00403342 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2001 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 TE 1000 AR 21 1969 2 03 142-156 |
allfieldsGer |
10.1007/BF00403342 doi (DE-627)OLC2070480119 (DE-He213)BF00403342-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Doe, Bruce R. verfasserin aut Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. 1969 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1969 Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, $ K_{2} $O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. $ K_{2} $O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% $ K_{2} $O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios. The primitive basalts have: 206Pb/204Pb ∼ 18.09–18.34, 207Pb/204Pb ∼ 15.5, 208Pb/204Pb ∼ 37.6–37.9, 87Sr/86Sr ∼ 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises. Strontium Thorium Lead Isotope Crustal Rock Strontium Isotope Lipman, Peter W. aut Hedge, Carl E. aut Kurasawa, Hajime aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 21(1969), 2 vom: März, Seite 142-156 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:21 year:1969 number:2 month:03 pages:142-156 https://doi.org/10.1007/BF00403342 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2001 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 TE 1000 AR 21 1969 2 03 142-156 |
allfieldsSound |
10.1007/BF00403342 doi (DE-627)OLC2070480119 (DE-He213)BF00403342-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Doe, Bruce R. verfasserin aut Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. 1969 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1969 Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, $ K_{2} $O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. $ K_{2} $O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% $ K_{2} $O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios. The primitive basalts have: 206Pb/204Pb ∼ 18.09–18.34, 207Pb/204Pb ∼ 15.5, 208Pb/204Pb ∼ 37.6–37.9, 87Sr/86Sr ∼ 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises. Strontium Thorium Lead Isotope Crustal Rock Strontium Isotope Lipman, Peter W. aut Hedge, Carl E. aut Kurasawa, Hajime aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 21(1969), 2 vom: März, Seite 142-156 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:21 year:1969 number:2 month:03 pages:142-156 https://doi.org/10.1007/BF00403342 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2001 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 TE 1000 AR 21 1969 2 03 142-156 |
language |
English |
source |
Enthalten in Contributions to mineralogy and petrology 21(1969), 2 vom: März, Seite 142-156 volume:21 year:1969 number:2 month:03 pages:142-156 |
sourceStr |
Enthalten in Contributions to mineralogy and petrology 21(1969), 2 vom: März, Seite 142-156 volume:21 year:1969 number:2 month:03 pages:142-156 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Strontium Thorium Lead Isotope Crustal Rock Strontium Isotope |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Contributions to mineralogy and petrology |
authorswithroles_txt_mv |
Doe, Bruce R. @@aut@@ Lipman, Peter W. @@aut@@ Hedge, Carl E. @@aut@@ Kurasawa, Hajime @@aut@@ |
publishDateDaySort_date |
1969-03-01T00:00:00Z |
hierarchy_top_id |
129068721 |
dewey-sort |
3550 |
id |
OLC2070480119 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070480119</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402223648.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1969 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00403342</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070480119</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00403342-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Doe, Bruce R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1969</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1969</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, $ K_{2} $O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. $ K_{2} $O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% $ K_{2} $O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios. The primitive basalts have: 206Pb/204Pb ∼ 18.09–18.34, 207Pb/204Pb ∼ 15.5, 208Pb/204Pb ∼ 37.6–37.9, 87Sr/86Sr ∼ 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strontium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thorium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lead Isotope</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crustal Rock</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strontium Isotope</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lipman, Peter W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hedge, Carl E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurasawa, Hajime</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Contributions to mineralogy and petrology</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">21(1969), 2 vom: März, Seite 142-156</subfield><subfield code="w">(DE-627)129068721</subfield><subfield code="w">(DE-600)1616-0</subfield><subfield code="w">(DE-576)014400367</subfield><subfield code="x">0010-7999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:1969</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:142-156</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00403342</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">1969</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">142-156</subfield></datafield></record></collection>
|
author |
Doe, Bruce R. |
spellingShingle |
Doe, Bruce R. ddc 550 ssgn 13 rvk TE 1000 misc Strontium misc Thorium misc Lead Isotope misc Crustal Rock misc Strontium Isotope Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. |
authorStr |
Doe, Bruce R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129068721 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-7999 |
topic_title |
550 VZ 13 ssgn TE 1000 VZ rvk Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. Strontium Thorium Lead Isotope Crustal Rock Strontium Isotope |
topic |
ddc 550 ssgn 13 rvk TE 1000 misc Strontium misc Thorium misc Lead Isotope misc Crustal Rock misc Strontium Isotope |
topic_unstemmed |
ddc 550 ssgn 13 rvk TE 1000 misc Strontium misc Thorium misc Lead Isotope misc Crustal Rock misc Strontium Isotope |
topic_browse |
ddc 550 ssgn 13 rvk TE 1000 misc Strontium misc Thorium misc Lead Isotope misc Crustal Rock misc Strontium Isotope |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Contributions to mineralogy and petrology |
hierarchy_parent_id |
129068721 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Contributions to mineralogy and petrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 |
title |
Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. |
ctrlnum |
(DE-627)OLC2070480119 (DE-He213)BF00403342-p |
title_full |
Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. |
author_sort |
Doe, Bruce R. |
journal |
Contributions to mineralogy and petrology |
journalStr |
Contributions to mineralogy and petrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1969 |
contenttype_str_mv |
txt |
container_start_page |
142 |
author_browse |
Doe, Bruce R. Lipman, Peter W. Hedge, Carl E. Kurasawa, Hajime |
container_volume |
21 |
class |
550 VZ 13 ssgn TE 1000 VZ rvk |
format_se |
Aufsätze |
author-letter |
Doe, Bruce R. |
doi_str_mv |
10.1007/BF00403342 |
dewey-full |
550 |
title_sort |
primitive and contaminated basalts from the southern rocky mountains, u.s.a. |
title_auth |
Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. |
abstract |
Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, $ K_{2} $O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. $ K_{2} $O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% $ K_{2} $O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios. The primitive basalts have: 206Pb/204Pb ∼ 18.09–18.34, 207Pb/204Pb ∼ 15.5, 208Pb/204Pb ∼ 37.6–37.9, 87Sr/86Sr ∼ 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises. © Springer-Verlag 1969 |
abstractGer |
Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, $ K_{2} $O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. $ K_{2} $O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% $ K_{2} $O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios. The primitive basalts have: 206Pb/204Pb ∼ 18.09–18.34, 207Pb/204Pb ∼ 15.5, 208Pb/204Pb ∼ 37.6–37.9, 87Sr/86Sr ∼ 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises. © Springer-Verlag 1969 |
abstract_unstemmed |
Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, $ K_{2} $O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. $ K_{2} $O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% $ K_{2} $O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios. The primitive basalts have: 206Pb/204Pb ∼ 18.09–18.34, 207Pb/204Pb ∼ 15.5, 208Pb/204Pb ∼ 37.6–37.9, 87Sr/86Sr ∼ 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises. © Springer-Verlag 1969 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2001 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 |
container_issue |
2 |
title_short |
Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A. |
url |
https://doi.org/10.1007/BF00403342 |
remote_bool |
false |
author2 |
Lipman, Peter W. Hedge, Carl E. Kurasawa, Hajime |
author2Str |
Lipman, Peter W. Hedge, Carl E. Kurasawa, Hajime |
ppnlink |
129068721 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00403342 |
up_date |
2024-07-04T01:25:16.148Z |
_version_ |
1803609771763302400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070480119</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402223648.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1969 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00403342</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070480119</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00403342-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Doe, Bruce R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1969</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1969</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, $ K_{2} $O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. $ K_{2} $O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% $ K_{2} $O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios. The primitive basalts have: 206Pb/204Pb ∼ 18.09–18.34, 207Pb/204Pb ∼ 15.5, 208Pb/204Pb ∼ 37.6–37.9, 87Sr/86Sr ∼ 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strontium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thorium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lead Isotope</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crustal Rock</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strontium Isotope</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lipman, Peter W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hedge, Carl E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurasawa, Hajime</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Contributions to mineralogy and petrology</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">21(1969), 2 vom: März, Seite 142-156</subfield><subfield code="w">(DE-627)129068721</subfield><subfield code="w">(DE-600)1616-0</subfield><subfield code="w">(DE-576)014400367</subfield><subfield code="x">0010-7999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:1969</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:142-156</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00403342</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">1969</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">142-156</subfield></datafield></record></collection>
|
score |
7.4011774 |