Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source
Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the na...
Ausführliche Beschreibung
Autor*in: |
Wesley McCall, G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1990 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 1990 |
---|
Übergeordnetes Werk: |
Enthalten in: Contributions to mineralogy and petrology - Springer-Verlag, 1966, 104(1990), 4 vom: Juli, Seite 439-452 |
---|---|
Übergeordnetes Werk: |
volume:104 ; year:1990 ; number:4 ; month:07 ; pages:439-452 |
Links: |
---|
DOI / URN: |
10.1007/BF01575621 |
---|
Katalog-ID: |
OLC2070507653 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070507653 | ||
003 | DE-627 | ||
005 | 20230402224941.0 | ||
007 | tu | ||
008 | 200820s1990 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01575621 |2 doi | |
035 | |a (DE-627)OLC2070507653 | ||
035 | |a (DE-He213)BF01575621-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 13 |2 ssgn | ||
084 | |a TE 1000 |q VZ |2 rvk | ||
100 | 1 | |a Wesley McCall, G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source |
264 | 1 | |c 1990 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1990 | ||
520 | |a Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO−FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have εNd2700 values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an $ ε_{Nd} $ vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/$ Yb_{n} $=10–15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ∼10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80–100 x chondrite), Sr (580–1400 ppm), and Ba (590–1600 ppm) indicate derivation from an enriched mantle. These apparently contradictory chemical characteristics can be reconciled if the source region of the lamprophyres was depleted over a period of time but subsequently enriched just prior to genesis of the lamprophyre magmas. It is suggested that the source of the enriched component may have been fluids derived from dehydration of a subducting ocean crust. | ||
650 | 4 | |a Olivine | |
650 | 4 | |a Mantle Source | |
650 | 4 | |a Enrich Mantle | |
650 | 4 | |a Garnet Lherzolite | |
650 | 4 | |a Deplete Mantle Source | |
700 | 1 | |a Nabelek, Peter I. |4 aut | |
700 | 1 | |a Bauer, Robert L. |4 aut | |
700 | 1 | |a Glascock, Michael D. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Contributions to mineralogy and petrology |d Springer-Verlag, 1966 |g 104(1990), 4 vom: Juli, Seite 439-452 |w (DE-627)129068721 |w (DE-600)1616-0 |w (DE-576)014400367 |x 0010-7999 |7 nnns |
773 | 1 | 8 | |g volume:104 |g year:1990 |g number:4 |g month:07 |g pages:439-452 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01575621 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2399 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4302 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a TE 1000 |
951 | |a AR | ||
952 | |d 104 |j 1990 |e 4 |c 07 |h 439-452 |
author_variant |
m g w mg mgw p i n pi pin r l b rl rlb m d g md mdg |
---|---|
matchkey_str |
article:00107999:1990----::ergnssfrhalmrpyeiteotenemlogaiicmlxoteseninstwtipia |
hierarchy_sort_str |
1990 |
publishDate |
1990 |
allfields |
10.1007/BF01575621 doi (DE-627)OLC2070507653 (DE-He213)BF01575621-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Wesley McCall, G. verfasserin aut Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1990 Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO−FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have εNd2700 values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an $ ε_{Nd} $ vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/$ Yb_{n} $=10–15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ∼10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80–100 x chondrite), Sr (580–1400 ppm), and Ba (590–1600 ppm) indicate derivation from an enriched mantle. These apparently contradictory chemical characteristics can be reconciled if the source region of the lamprophyres was depleted over a period of time but subsequently enriched just prior to genesis of the lamprophyre magmas. It is suggested that the source of the enriched component may have been fluids derived from dehydration of a subducting ocean crust. Olivine Mantle Source Enrich Mantle Garnet Lherzolite Deplete Mantle Source Nabelek, Peter I. aut Bauer, Robert L. aut Glascock, Michael D. aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 104(1990), 4 vom: Juli, Seite 439-452 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:104 year:1990 number:4 month:07 pages:439-452 https://doi.org/10.1007/BF01575621 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 TE 1000 AR 104 1990 4 07 439-452 |
spelling |
10.1007/BF01575621 doi (DE-627)OLC2070507653 (DE-He213)BF01575621-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Wesley McCall, G. verfasserin aut Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1990 Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO−FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have εNd2700 values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an $ ε_{Nd} $ vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/$ Yb_{n} $=10–15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ∼10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80–100 x chondrite), Sr (580–1400 ppm), and Ba (590–1600 ppm) indicate derivation from an enriched mantle. These apparently contradictory chemical characteristics can be reconciled if the source region of the lamprophyres was depleted over a period of time but subsequently enriched just prior to genesis of the lamprophyre magmas. It is suggested that the source of the enriched component may have been fluids derived from dehydration of a subducting ocean crust. Olivine Mantle Source Enrich Mantle Garnet Lherzolite Deplete Mantle Source Nabelek, Peter I. aut Bauer, Robert L. aut Glascock, Michael D. aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 104(1990), 4 vom: Juli, Seite 439-452 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:104 year:1990 number:4 month:07 pages:439-452 https://doi.org/10.1007/BF01575621 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 TE 1000 AR 104 1990 4 07 439-452 |
allfields_unstemmed |
10.1007/BF01575621 doi (DE-627)OLC2070507653 (DE-He213)BF01575621-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Wesley McCall, G. verfasserin aut Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1990 Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO−FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have εNd2700 values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an $ ε_{Nd} $ vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/$ Yb_{n} $=10–15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ∼10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80–100 x chondrite), Sr (580–1400 ppm), and Ba (590–1600 ppm) indicate derivation from an enriched mantle. These apparently contradictory chemical characteristics can be reconciled if the source region of the lamprophyres was depleted over a period of time but subsequently enriched just prior to genesis of the lamprophyre magmas. It is suggested that the source of the enriched component may have been fluids derived from dehydration of a subducting ocean crust. Olivine Mantle Source Enrich Mantle Garnet Lherzolite Deplete Mantle Source Nabelek, Peter I. aut Bauer, Robert L. aut Glascock, Michael D. aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 104(1990), 4 vom: Juli, Seite 439-452 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:104 year:1990 number:4 month:07 pages:439-452 https://doi.org/10.1007/BF01575621 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 TE 1000 AR 104 1990 4 07 439-452 |
allfieldsGer |
10.1007/BF01575621 doi (DE-627)OLC2070507653 (DE-He213)BF01575621-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Wesley McCall, G. verfasserin aut Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1990 Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO−FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have εNd2700 values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an $ ε_{Nd} $ vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/$ Yb_{n} $=10–15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ∼10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80–100 x chondrite), Sr (580–1400 ppm), and Ba (590–1600 ppm) indicate derivation from an enriched mantle. These apparently contradictory chemical characteristics can be reconciled if the source region of the lamprophyres was depleted over a period of time but subsequently enriched just prior to genesis of the lamprophyre magmas. It is suggested that the source of the enriched component may have been fluids derived from dehydration of a subducting ocean crust. Olivine Mantle Source Enrich Mantle Garnet Lherzolite Deplete Mantle Source Nabelek, Peter I. aut Bauer, Robert L. aut Glascock, Michael D. aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 104(1990), 4 vom: Juli, Seite 439-452 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:104 year:1990 number:4 month:07 pages:439-452 https://doi.org/10.1007/BF01575621 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 TE 1000 AR 104 1990 4 07 439-452 |
allfieldsSound |
10.1007/BF01575621 doi (DE-627)OLC2070507653 (DE-He213)BF01575621-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Wesley McCall, G. verfasserin aut Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source 1990 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1990 Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO−FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have εNd2700 values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an $ ε_{Nd} $ vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/$ Yb_{n} $=10–15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ∼10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80–100 x chondrite), Sr (580–1400 ppm), and Ba (590–1600 ppm) indicate derivation from an enriched mantle. These apparently contradictory chemical characteristics can be reconciled if the source region of the lamprophyres was depleted over a period of time but subsequently enriched just prior to genesis of the lamprophyre magmas. It is suggested that the source of the enriched component may have been fluids derived from dehydration of a subducting ocean crust. Olivine Mantle Source Enrich Mantle Garnet Lherzolite Deplete Mantle Source Nabelek, Peter I. aut Bauer, Robert L. aut Glascock, Michael D. aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 104(1990), 4 vom: Juli, Seite 439-452 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:104 year:1990 number:4 month:07 pages:439-452 https://doi.org/10.1007/BF01575621 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 TE 1000 AR 104 1990 4 07 439-452 |
language |
English |
source |
Enthalten in Contributions to mineralogy and petrology 104(1990), 4 vom: Juli, Seite 439-452 volume:104 year:1990 number:4 month:07 pages:439-452 |
sourceStr |
Enthalten in Contributions to mineralogy and petrology 104(1990), 4 vom: Juli, Seite 439-452 volume:104 year:1990 number:4 month:07 pages:439-452 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Olivine Mantle Source Enrich Mantle Garnet Lherzolite Deplete Mantle Source |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Contributions to mineralogy and petrology |
authorswithroles_txt_mv |
Wesley McCall, G. @@aut@@ Nabelek, Peter I. @@aut@@ Bauer, Robert L. @@aut@@ Glascock, Michael D. @@aut@@ |
publishDateDaySort_date |
1990-07-01T00:00:00Z |
hierarchy_top_id |
129068721 |
dewey-sort |
3550 |
id |
OLC2070507653 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070507653</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402224941.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1990 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01575621</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070507653</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01575621-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wesley McCall, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1990</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1990</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO−FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have εNd2700 values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an $ ε_{Nd} $ vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/$ Yb_{n} $=10–15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ∼10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80–100 x chondrite), Sr (580–1400 ppm), and Ba (590–1600 ppm) indicate derivation from an enriched mantle. These apparently contradictory chemical characteristics can be reconciled if the source region of the lamprophyres was depleted over a period of time but subsequently enriched just prior to genesis of the lamprophyre magmas. It is suggested that the source of the enriched component may have been fluids derived from dehydration of a subducting ocean crust.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Olivine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mantle Source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enrich Mantle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Garnet Lherzolite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deplete Mantle Source</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nabelek, Peter I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bauer, Robert L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glascock, Michael D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Contributions to mineralogy and petrology</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">104(1990), 4 vom: Juli, Seite 439-452</subfield><subfield code="w">(DE-627)129068721</subfield><subfield code="w">(DE-600)1616-0</subfield><subfield code="w">(DE-576)014400367</subfield><subfield code="x">0010-7999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:104</subfield><subfield code="g">year:1990</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:439-452</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01575621</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2399</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">104</subfield><subfield code="j">1990</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">439-452</subfield></datafield></record></collection>
|
author |
Wesley McCall, G. |
spellingShingle |
Wesley McCall, G. ddc 550 ssgn 13 rvk TE 1000 misc Olivine misc Mantle Source misc Enrich Mantle misc Garnet Lherzolite misc Deplete Mantle Source Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source |
authorStr |
Wesley McCall, G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129068721 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-7999 |
topic_title |
550 VZ 13 ssgn TE 1000 VZ rvk Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source Olivine Mantle Source Enrich Mantle Garnet Lherzolite Deplete Mantle Source |
topic |
ddc 550 ssgn 13 rvk TE 1000 misc Olivine misc Mantle Source misc Enrich Mantle misc Garnet Lherzolite misc Deplete Mantle Source |
topic_unstemmed |
ddc 550 ssgn 13 rvk TE 1000 misc Olivine misc Mantle Source misc Enrich Mantle misc Garnet Lherzolite misc Deplete Mantle Source |
topic_browse |
ddc 550 ssgn 13 rvk TE 1000 misc Olivine misc Mantle Source misc Enrich Mantle misc Garnet Lherzolite misc Deplete Mantle Source |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Contributions to mineralogy and petrology |
hierarchy_parent_id |
129068721 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Contributions to mineralogy and petrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 |
title |
Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source |
ctrlnum |
(DE-627)OLC2070507653 (DE-He213)BF01575621-p |
title_full |
Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source |
author_sort |
Wesley McCall, G. |
journal |
Contributions to mineralogy and petrology |
journalStr |
Contributions to mineralogy and petrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1990 |
contenttype_str_mv |
txt |
container_start_page |
439 |
author_browse |
Wesley McCall, G. Nabelek, Peter I. Bauer, Robert L. Glascock, Michael D. |
container_volume |
104 |
class |
550 VZ 13 ssgn TE 1000 VZ rvk |
format_se |
Aufsätze |
author-letter |
Wesley McCall, G. |
doi_str_mv |
10.1007/BF01575621 |
dewey-full |
550 |
title_sort |
petrogenesis of archean lamprophyres in the southern vermilion granitic complex, northeastern minnesota, with implications for the nature of their mantle source |
title_auth |
Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source |
abstract |
Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO−FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have εNd2700 values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an $ ε_{Nd} $ vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/$ Yb_{n} $=10–15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ∼10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80–100 x chondrite), Sr (580–1400 ppm), and Ba (590–1600 ppm) indicate derivation from an enriched mantle. These apparently contradictory chemical characteristics can be reconciled if the source region of the lamprophyres was depleted over a period of time but subsequently enriched just prior to genesis of the lamprophyre magmas. It is suggested that the source of the enriched component may have been fluids derived from dehydration of a subducting ocean crust. © Springer-Verlag 1990 |
abstractGer |
Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO−FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have εNd2700 values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an $ ε_{Nd} $ vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/$ Yb_{n} $=10–15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ∼10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80–100 x chondrite), Sr (580–1400 ppm), and Ba (590–1600 ppm) indicate derivation from an enriched mantle. These apparently contradictory chemical characteristics can be reconciled if the source region of the lamprophyres was depleted over a period of time but subsequently enriched just prior to genesis of the lamprophyre magmas. It is suggested that the source of the enriched component may have been fluids derived from dehydration of a subducting ocean crust. © Springer-Verlag 1990 |
abstract_unstemmed |
Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO−FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have εNd2700 values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an $ ε_{Nd} $ vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/$ Yb_{n} $=10–15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ∼10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80–100 x chondrite), Sr (580–1400 ppm), and Ba (590–1600 ppm) indicate derivation from an enriched mantle. These apparently contradictory chemical characteristics can be reconciled if the source region of the lamprophyres was depleted over a period of time but subsequently enriched just prior to genesis of the lamprophyre magmas. It is suggested that the source of the enriched component may have been fluids derived from dehydration of a subducting ocean crust. © Springer-Verlag 1990 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
4 |
title_short |
Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source |
url |
https://doi.org/10.1007/BF01575621 |
remote_bool |
false |
author2 |
Nabelek, Peter I. Bauer, Robert L. Glascock, Michael D. |
author2Str |
Nabelek, Peter I. Bauer, Robert L. Glascock, Michael D. |
ppnlink |
129068721 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01575621 |
up_date |
2024-07-04T01:30:27.276Z |
_version_ |
1803610098002558976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070507653</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402224941.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1990 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01575621</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070507653</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01575621-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wesley McCall, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1990</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1990</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO−FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have εNd2700 values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an $ ε_{Nd} $ vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/$ Yb_{n} $=10–15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ∼10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80–100 x chondrite), Sr (580–1400 ppm), and Ba (590–1600 ppm) indicate derivation from an enriched mantle. These apparently contradictory chemical characteristics can be reconciled if the source region of the lamprophyres was depleted over a period of time but subsequently enriched just prior to genesis of the lamprophyre magmas. It is suggested that the source of the enriched component may have been fluids derived from dehydration of a subducting ocean crust.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Olivine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mantle Source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enrich Mantle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Garnet Lherzolite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deplete Mantle Source</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nabelek, Peter I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bauer, Robert L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glascock, Michael D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Contributions to mineralogy and petrology</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">104(1990), 4 vom: Juli, Seite 439-452</subfield><subfield code="w">(DE-627)129068721</subfield><subfield code="w">(DE-600)1616-0</subfield><subfield code="w">(DE-576)014400367</subfield><subfield code="x">0010-7999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:104</subfield><subfield code="g">year:1990</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:439-452</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01575621</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2399</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">104</subfield><subfield code="j">1990</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">439-452</subfield></datafield></record></collection>
|
score |
7.3994293 |