A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France)
Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are char...
Ausführliche Beschreibung
Autor*in: |
Pin, Christian [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1997 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 1997 |
---|
Übergeordnetes Werk: |
Enthalten in: Contributions to mineralogy and petrology - Springer-Verlag, 1966, 129(1997), 2-3 vom: Okt., Seite 222-238 |
---|---|
Übergeordnetes Werk: |
volume:129 ; year:1997 ; number:2-3 ; month:10 ; pages:222-238 |
Links: |
---|
DOI / URN: |
10.1007/s004100050334 |
---|
Katalog-ID: |
OLC2070516628 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070516628 | ||
003 | DE-627 | ||
005 | 20230402225406.0 | ||
007 | tu | ||
008 | 200820s1997 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s004100050334 |2 doi | |
035 | |a (DE-627)OLC2070516628 | ||
035 | |a (DE-He213)s004100050334-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 13 |2 ssgn | ||
084 | |a TE 1000 |q VZ |2 rvk | ||
100 | 1 | |a Pin, Christian |e verfasserin |4 aut | |
245 | 1 | 0 | |a A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) |
264 | 1 | |c 1997 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 1997 | ||
520 | |a Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are characterized by a distinct enrichment in incompatible elements (e.g. Th and LREE) and positive $ ɛNd_{i} $ (from +5 to +8). Combined isotope and trace element systematics rule out crustal contamination of mafic melts as a suitable cause of the LILE (large ion lithophile element)-enrichment. Rather, a mixing process between a component similar to mid ocean ridge basalts and an enriched end-member with $ ɛNd_{i} $ > +5 is suggested. An enriched-mantle source of ocean island basalt affinity is precluded by the relative depletion of high field strength elements, especially Nb which shows negative anomalies in chondrite-normalized patterns. On the contrary, a subduction-related origin for the LILE enrichment would be more consistent. It may be inferred that arc-like melts [enriched in Th and LREE (light rare earth elements) and depleted in Nb, with $ ɛNd_{i} $ > +5] were produced through partial melting of a depleted-mantle source, to which a small amount of crustally derived component had been added. The metarhyolites are enriched in LILE, and have a close genetic relationship with the metabasalts, as evidenced by their high $ ɛNd_{i} $ (from +4.7 to +6.8). Although the chemical evidence remains ambiguous, it is suggested that fractional crystallization, accompanied by subordinate assimilation, is the petrogenetic process most consistent with the data. The trondhjemites are isotopically distinct from the metarhyolites. Their $ ɛNd_{i} $ values (from −1.0 to +2.2) reflect an important contribution of continental crust to their genesis, and disprove their inferred cogenetism with the felsic volcanics. A review of modern environments in which such bimodal suites are exposed, shows that settings involving incipient rifting of a volcanic arc fringing a continental margin, or built upon young, thin continental crust might provide suitable analogues. Geodynamic reconstructions are complicated by subsequent tectonic events which disrupted the initial patterns, and by Mesozoic-Cenozoic sedimentary cover. However, this subduction-related magmatism enlarges the growing body of evidence for southward subduction processes until the Late Devonian during the evolution of the northern flank of the European Variscides. As a general implication, it is suggested that the combined use of the Sm-Nd system with incompatible elements relatively resistant during alteration and low-grade metamorphism (REE, Th, Zr, Nb) may provide diagnostic criteria for recognizing the tectonic setting of bimodal metaigneous suites in ancient orogenic belts. | ||
650 | 4 | |a Devonian | |
650 | 4 | |a Continental Crust | |
650 | 4 | |a Ocean Island Basalt | |
650 | 4 | |a High Field Strength Element | |
650 | 4 | |a Ocean Ridge Basalt | |
700 | 1 | |a Paquette, Jean-Louis |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Contributions to mineralogy and petrology |d Springer-Verlag, 1966 |g 129(1997), 2-3 vom: Okt., Seite 222-238 |w (DE-627)129068721 |w (DE-600)1616-0 |w (DE-576)014400367 |x 0010-7999 |7 nnns |
773 | 1 | 8 | |g volume:129 |g year:1997 |g number:2-3 |g month:10 |g pages:222-238 |
856 | 4 | 1 | |u https://doi.org/10.1007/s004100050334 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a TE 1000 |
951 | |a AR | ||
952 | |d 129 |j 1997 |e 2-3 |c 10 |h 222-238 |
author_variant |
c p cp j l p jlp |
---|---|
matchkey_str |
article:00107999:1997----::mnldrvdioasienhhryinetdstpadrceeetvdneoaudcineaerfoiioteaeeo |
hierarchy_sort_str |
1997 |
publishDate |
1997 |
allfields |
10.1007/s004100050334 doi (DE-627)OLC2070516628 (DE-He213)s004100050334-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Pin, Christian verfasserin aut A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1997 Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are characterized by a distinct enrichment in incompatible elements (e.g. Th and LREE) and positive $ ɛNd_{i} $ (from +5 to +8). Combined isotope and trace element systematics rule out crustal contamination of mafic melts as a suitable cause of the LILE (large ion lithophile element)-enrichment. Rather, a mixing process between a component similar to mid ocean ridge basalts and an enriched end-member with $ ɛNd_{i} $ > +5 is suggested. An enriched-mantle source of ocean island basalt affinity is precluded by the relative depletion of high field strength elements, especially Nb which shows negative anomalies in chondrite-normalized patterns. On the contrary, a subduction-related origin for the LILE enrichment would be more consistent. It may be inferred that arc-like melts [enriched in Th and LREE (light rare earth elements) and depleted in Nb, with $ ɛNd_{i} $ > +5] were produced through partial melting of a depleted-mantle source, to which a small amount of crustally derived component had been added. The metarhyolites are enriched in LILE, and have a close genetic relationship with the metabasalts, as evidenced by their high $ ɛNd_{i} $ (from +4.7 to +6.8). Although the chemical evidence remains ambiguous, it is suggested that fractional crystallization, accompanied by subordinate assimilation, is the petrogenetic process most consistent with the data. The trondhjemites are isotopically distinct from the metarhyolites. Their $ ɛNd_{i} $ values (from −1.0 to +2.2) reflect an important contribution of continental crust to their genesis, and disprove their inferred cogenetism with the felsic volcanics. A review of modern environments in which such bimodal suites are exposed, shows that settings involving incipient rifting of a volcanic arc fringing a continental margin, or built upon young, thin continental crust might provide suitable analogues. Geodynamic reconstructions are complicated by subsequent tectonic events which disrupted the initial patterns, and by Mesozoic-Cenozoic sedimentary cover. However, this subduction-related magmatism enlarges the growing body of evidence for southward subduction processes until the Late Devonian during the evolution of the northern flank of the European Variscides. As a general implication, it is suggested that the combined use of the Sm-Nd system with incompatible elements relatively resistant during alteration and low-grade metamorphism (REE, Th, Zr, Nb) may provide diagnostic criteria for recognizing the tectonic setting of bimodal metaigneous suites in ancient orogenic belts. Devonian Continental Crust Ocean Island Basalt High Field Strength Element Ocean Ridge Basalt Paquette, Jean-Louis aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 129(1997), 2-3 vom: Okt., Seite 222-238 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:129 year:1997 number:2-3 month:10 pages:222-238 https://doi.org/10.1007/s004100050334 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 TE 1000 AR 129 1997 2-3 10 222-238 |
spelling |
10.1007/s004100050334 doi (DE-627)OLC2070516628 (DE-He213)s004100050334-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Pin, Christian verfasserin aut A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1997 Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are characterized by a distinct enrichment in incompatible elements (e.g. Th and LREE) and positive $ ɛNd_{i} $ (from +5 to +8). Combined isotope and trace element systematics rule out crustal contamination of mafic melts as a suitable cause of the LILE (large ion lithophile element)-enrichment. Rather, a mixing process between a component similar to mid ocean ridge basalts and an enriched end-member with $ ɛNd_{i} $ > +5 is suggested. An enriched-mantle source of ocean island basalt affinity is precluded by the relative depletion of high field strength elements, especially Nb which shows negative anomalies in chondrite-normalized patterns. On the contrary, a subduction-related origin for the LILE enrichment would be more consistent. It may be inferred that arc-like melts [enriched in Th and LREE (light rare earth elements) and depleted in Nb, with $ ɛNd_{i} $ > +5] were produced through partial melting of a depleted-mantle source, to which a small amount of crustally derived component had been added. The metarhyolites are enriched in LILE, and have a close genetic relationship with the metabasalts, as evidenced by their high $ ɛNd_{i} $ (from +4.7 to +6.8). Although the chemical evidence remains ambiguous, it is suggested that fractional crystallization, accompanied by subordinate assimilation, is the petrogenetic process most consistent with the data. The trondhjemites are isotopically distinct from the metarhyolites. Their $ ɛNd_{i} $ values (from −1.0 to +2.2) reflect an important contribution of continental crust to their genesis, and disprove their inferred cogenetism with the felsic volcanics. A review of modern environments in which such bimodal suites are exposed, shows that settings involving incipient rifting of a volcanic arc fringing a continental margin, or built upon young, thin continental crust might provide suitable analogues. Geodynamic reconstructions are complicated by subsequent tectonic events which disrupted the initial patterns, and by Mesozoic-Cenozoic sedimentary cover. However, this subduction-related magmatism enlarges the growing body of evidence for southward subduction processes until the Late Devonian during the evolution of the northern flank of the European Variscides. As a general implication, it is suggested that the combined use of the Sm-Nd system with incompatible elements relatively resistant during alteration and low-grade metamorphism (REE, Th, Zr, Nb) may provide diagnostic criteria for recognizing the tectonic setting of bimodal metaigneous suites in ancient orogenic belts. Devonian Continental Crust Ocean Island Basalt High Field Strength Element Ocean Ridge Basalt Paquette, Jean-Louis aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 129(1997), 2-3 vom: Okt., Seite 222-238 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:129 year:1997 number:2-3 month:10 pages:222-238 https://doi.org/10.1007/s004100050334 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 TE 1000 AR 129 1997 2-3 10 222-238 |
allfields_unstemmed |
10.1007/s004100050334 doi (DE-627)OLC2070516628 (DE-He213)s004100050334-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Pin, Christian verfasserin aut A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1997 Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are characterized by a distinct enrichment in incompatible elements (e.g. Th and LREE) and positive $ ɛNd_{i} $ (from +5 to +8). Combined isotope and trace element systematics rule out crustal contamination of mafic melts as a suitable cause of the LILE (large ion lithophile element)-enrichment. Rather, a mixing process between a component similar to mid ocean ridge basalts and an enriched end-member with $ ɛNd_{i} $ > +5 is suggested. An enriched-mantle source of ocean island basalt affinity is precluded by the relative depletion of high field strength elements, especially Nb which shows negative anomalies in chondrite-normalized patterns. On the contrary, a subduction-related origin for the LILE enrichment would be more consistent. It may be inferred that arc-like melts [enriched in Th and LREE (light rare earth elements) and depleted in Nb, with $ ɛNd_{i} $ > +5] were produced through partial melting of a depleted-mantle source, to which a small amount of crustally derived component had been added. The metarhyolites are enriched in LILE, and have a close genetic relationship with the metabasalts, as evidenced by their high $ ɛNd_{i} $ (from +4.7 to +6.8). Although the chemical evidence remains ambiguous, it is suggested that fractional crystallization, accompanied by subordinate assimilation, is the petrogenetic process most consistent with the data. The trondhjemites are isotopically distinct from the metarhyolites. Their $ ɛNd_{i} $ values (from −1.0 to +2.2) reflect an important contribution of continental crust to their genesis, and disprove their inferred cogenetism with the felsic volcanics. A review of modern environments in which such bimodal suites are exposed, shows that settings involving incipient rifting of a volcanic arc fringing a continental margin, or built upon young, thin continental crust might provide suitable analogues. Geodynamic reconstructions are complicated by subsequent tectonic events which disrupted the initial patterns, and by Mesozoic-Cenozoic sedimentary cover. However, this subduction-related magmatism enlarges the growing body of evidence for southward subduction processes until the Late Devonian during the evolution of the northern flank of the European Variscides. As a general implication, it is suggested that the combined use of the Sm-Nd system with incompatible elements relatively resistant during alteration and low-grade metamorphism (REE, Th, Zr, Nb) may provide diagnostic criteria for recognizing the tectonic setting of bimodal metaigneous suites in ancient orogenic belts. Devonian Continental Crust Ocean Island Basalt High Field Strength Element Ocean Ridge Basalt Paquette, Jean-Louis aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 129(1997), 2-3 vom: Okt., Seite 222-238 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:129 year:1997 number:2-3 month:10 pages:222-238 https://doi.org/10.1007/s004100050334 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 TE 1000 AR 129 1997 2-3 10 222-238 |
allfieldsGer |
10.1007/s004100050334 doi (DE-627)OLC2070516628 (DE-He213)s004100050334-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Pin, Christian verfasserin aut A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1997 Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are characterized by a distinct enrichment in incompatible elements (e.g. Th and LREE) and positive $ ɛNd_{i} $ (from +5 to +8). Combined isotope and trace element systematics rule out crustal contamination of mafic melts as a suitable cause of the LILE (large ion lithophile element)-enrichment. Rather, a mixing process between a component similar to mid ocean ridge basalts and an enriched end-member with $ ɛNd_{i} $ > +5 is suggested. An enriched-mantle source of ocean island basalt affinity is precluded by the relative depletion of high field strength elements, especially Nb which shows negative anomalies in chondrite-normalized patterns. On the contrary, a subduction-related origin for the LILE enrichment would be more consistent. It may be inferred that arc-like melts [enriched in Th and LREE (light rare earth elements) and depleted in Nb, with $ ɛNd_{i} $ > +5] were produced through partial melting of a depleted-mantle source, to which a small amount of crustally derived component had been added. The metarhyolites are enriched in LILE, and have a close genetic relationship with the metabasalts, as evidenced by their high $ ɛNd_{i} $ (from +4.7 to +6.8). Although the chemical evidence remains ambiguous, it is suggested that fractional crystallization, accompanied by subordinate assimilation, is the petrogenetic process most consistent with the data. The trondhjemites are isotopically distinct from the metarhyolites. Their $ ɛNd_{i} $ values (from −1.0 to +2.2) reflect an important contribution of continental crust to their genesis, and disprove their inferred cogenetism with the felsic volcanics. A review of modern environments in which such bimodal suites are exposed, shows that settings involving incipient rifting of a volcanic arc fringing a continental margin, or built upon young, thin continental crust might provide suitable analogues. Geodynamic reconstructions are complicated by subsequent tectonic events which disrupted the initial patterns, and by Mesozoic-Cenozoic sedimentary cover. However, this subduction-related magmatism enlarges the growing body of evidence for southward subduction processes until the Late Devonian during the evolution of the northern flank of the European Variscides. As a general implication, it is suggested that the combined use of the Sm-Nd system with incompatible elements relatively resistant during alteration and low-grade metamorphism (REE, Th, Zr, Nb) may provide diagnostic criteria for recognizing the tectonic setting of bimodal metaigneous suites in ancient orogenic belts. Devonian Continental Crust Ocean Island Basalt High Field Strength Element Ocean Ridge Basalt Paquette, Jean-Louis aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 129(1997), 2-3 vom: Okt., Seite 222-238 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:129 year:1997 number:2-3 month:10 pages:222-238 https://doi.org/10.1007/s004100050334 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 TE 1000 AR 129 1997 2-3 10 222-238 |
allfieldsSound |
10.1007/s004100050334 doi (DE-627)OLC2070516628 (DE-He213)s004100050334-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Pin, Christian verfasserin aut A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1997 Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are characterized by a distinct enrichment in incompatible elements (e.g. Th and LREE) and positive $ ɛNd_{i} $ (from +5 to +8). Combined isotope and trace element systematics rule out crustal contamination of mafic melts as a suitable cause of the LILE (large ion lithophile element)-enrichment. Rather, a mixing process between a component similar to mid ocean ridge basalts and an enriched end-member with $ ɛNd_{i} $ > +5 is suggested. An enriched-mantle source of ocean island basalt affinity is precluded by the relative depletion of high field strength elements, especially Nb which shows negative anomalies in chondrite-normalized patterns. On the contrary, a subduction-related origin for the LILE enrichment would be more consistent. It may be inferred that arc-like melts [enriched in Th and LREE (light rare earth elements) and depleted in Nb, with $ ɛNd_{i} $ > +5] were produced through partial melting of a depleted-mantle source, to which a small amount of crustally derived component had been added. The metarhyolites are enriched in LILE, and have a close genetic relationship with the metabasalts, as evidenced by their high $ ɛNd_{i} $ (from +4.7 to +6.8). Although the chemical evidence remains ambiguous, it is suggested that fractional crystallization, accompanied by subordinate assimilation, is the petrogenetic process most consistent with the data. The trondhjemites are isotopically distinct from the metarhyolites. Their $ ɛNd_{i} $ values (from −1.0 to +2.2) reflect an important contribution of continental crust to their genesis, and disprove their inferred cogenetism with the felsic volcanics. A review of modern environments in which such bimodal suites are exposed, shows that settings involving incipient rifting of a volcanic arc fringing a continental margin, or built upon young, thin continental crust might provide suitable analogues. Geodynamic reconstructions are complicated by subsequent tectonic events which disrupted the initial patterns, and by Mesozoic-Cenozoic sedimentary cover. However, this subduction-related magmatism enlarges the growing body of evidence for southward subduction processes until the Late Devonian during the evolution of the northern flank of the European Variscides. As a general implication, it is suggested that the combined use of the Sm-Nd system with incompatible elements relatively resistant during alteration and low-grade metamorphism (REE, Th, Zr, Nb) may provide diagnostic criteria for recognizing the tectonic setting of bimodal metaigneous suites in ancient orogenic belts. Devonian Continental Crust Ocean Island Basalt High Field Strength Element Ocean Ridge Basalt Paquette, Jean-Louis aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 129(1997), 2-3 vom: Okt., Seite 222-238 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:129 year:1997 number:2-3 month:10 pages:222-238 https://doi.org/10.1007/s004100050334 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 TE 1000 AR 129 1997 2-3 10 222-238 |
language |
English |
source |
Enthalten in Contributions to mineralogy and petrology 129(1997), 2-3 vom: Okt., Seite 222-238 volume:129 year:1997 number:2-3 month:10 pages:222-238 |
sourceStr |
Enthalten in Contributions to mineralogy and petrology 129(1997), 2-3 vom: Okt., Seite 222-238 volume:129 year:1997 number:2-3 month:10 pages:222-238 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Devonian Continental Crust Ocean Island Basalt High Field Strength Element Ocean Ridge Basalt |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Contributions to mineralogy and petrology |
authorswithroles_txt_mv |
Pin, Christian @@aut@@ Paquette, Jean-Louis @@aut@@ |
publishDateDaySort_date |
1997-10-01T00:00:00Z |
hierarchy_top_id |
129068721 |
dewey-sort |
3550 |
id |
OLC2070516628 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070516628</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402225406.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s004100050334</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070516628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s004100050334-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pin, Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are characterized by a distinct enrichment in incompatible elements (e.g. Th and LREE) and positive $ ɛNd_{i} $ (from +5 to +8). Combined isotope and trace element systematics rule out crustal contamination of mafic melts as a suitable cause of the LILE (large ion lithophile element)-enrichment. Rather, a mixing process between a component similar to mid ocean ridge basalts and an enriched end-member with $ ɛNd_{i} $ > +5 is suggested. An enriched-mantle source of ocean island basalt affinity is precluded by the relative depletion of high field strength elements, especially Nb which shows negative anomalies in chondrite-normalized patterns. On the contrary, a subduction-related origin for the LILE enrichment would be more consistent. It may be inferred that arc-like melts [enriched in Th and LREE (light rare earth elements) and depleted in Nb, with $ ɛNd_{i} $ > +5] were produced through partial melting of a depleted-mantle source, to which a small amount of crustally derived component had been added. The metarhyolites are enriched in LILE, and have a close genetic relationship with the metabasalts, as evidenced by their high $ ɛNd_{i} $ (from +4.7 to +6.8). Although the chemical evidence remains ambiguous, it is suggested that fractional crystallization, accompanied by subordinate assimilation, is the petrogenetic process most consistent with the data. The trondhjemites are isotopically distinct from the metarhyolites. Their $ ɛNd_{i} $ values (from −1.0 to +2.2) reflect an important contribution of continental crust to their genesis, and disprove their inferred cogenetism with the felsic volcanics. A review of modern environments in which such bimodal suites are exposed, shows that settings involving incipient rifting of a volcanic arc fringing a continental margin, or built upon young, thin continental crust might provide suitable analogues. Geodynamic reconstructions are complicated by subsequent tectonic events which disrupted the initial patterns, and by Mesozoic-Cenozoic sedimentary cover. However, this subduction-related magmatism enlarges the growing body of evidence for southward subduction processes until the Late Devonian during the evolution of the northern flank of the European Variscides. As a general implication, it is suggested that the combined use of the Sm-Nd system with incompatible elements relatively resistant during alteration and low-grade metamorphism (REE, Th, Zr, Nb) may provide diagnostic criteria for recognizing the tectonic setting of bimodal metaigneous suites in ancient orogenic belts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Devonian</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continental Crust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean Island Basalt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Field Strength Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean Ridge Basalt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paquette, Jean-Louis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Contributions to mineralogy and petrology</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">129(1997), 2-3 vom: Okt., Seite 222-238</subfield><subfield code="w">(DE-627)129068721</subfield><subfield code="w">(DE-600)1616-0</subfield><subfield code="w">(DE-576)014400367</subfield><subfield code="x">0010-7999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:129</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:2-3</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:222-238</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s004100050334</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">129</subfield><subfield code="j">1997</subfield><subfield code="e">2-3</subfield><subfield code="c">10</subfield><subfield code="h">222-238</subfield></datafield></record></collection>
|
author |
Pin, Christian |
spellingShingle |
Pin, Christian ddc 550 ssgn 13 rvk TE 1000 misc Devonian misc Continental Crust misc Ocean Island Basalt misc High Field Strength Element misc Ocean Ridge Basalt A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) |
authorStr |
Pin, Christian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129068721 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-7999 |
topic_title |
550 VZ 13 ssgn TE 1000 VZ rvk A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) Devonian Continental Crust Ocean Island Basalt High Field Strength Element Ocean Ridge Basalt |
topic |
ddc 550 ssgn 13 rvk TE 1000 misc Devonian misc Continental Crust misc Ocean Island Basalt misc High Field Strength Element misc Ocean Ridge Basalt |
topic_unstemmed |
ddc 550 ssgn 13 rvk TE 1000 misc Devonian misc Continental Crust misc Ocean Island Basalt misc High Field Strength Element misc Ocean Ridge Basalt |
topic_browse |
ddc 550 ssgn 13 rvk TE 1000 misc Devonian misc Continental Crust misc Ocean Island Basalt misc High Field Strength Element misc Ocean Ridge Basalt |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Contributions to mineralogy and petrology |
hierarchy_parent_id |
129068721 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Contributions to mineralogy and petrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 |
title |
A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) |
ctrlnum |
(DE-627)OLC2070516628 (DE-He213)s004100050334-p |
title_full |
A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) |
author_sort |
Pin, Christian |
journal |
Contributions to mineralogy and petrology |
journalStr |
Contributions to mineralogy and petrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1997 |
contenttype_str_mv |
txt |
container_start_page |
222 |
author_browse |
Pin, Christian Paquette, Jean-Louis |
container_volume |
129 |
class |
550 VZ 13 ssgn TE 1000 VZ rvk |
format_se |
Aufsätze |
author-letter |
Pin, Christian |
doi_str_mv |
10.1007/s004100050334 |
dewey-full |
550 |
title_sort |
a mantle-derived bimodal suite in the hercynian belt: nd isotope and trace element evidence for a subduction-related rift origin of the late devonian brévenne metavolcanics, massif central (france) |
title_auth |
A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) |
abstract |
Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are characterized by a distinct enrichment in incompatible elements (e.g. Th and LREE) and positive $ ɛNd_{i} $ (from +5 to +8). Combined isotope and trace element systematics rule out crustal contamination of mafic melts as a suitable cause of the LILE (large ion lithophile element)-enrichment. Rather, a mixing process between a component similar to mid ocean ridge basalts and an enriched end-member with $ ɛNd_{i} $ > +5 is suggested. An enriched-mantle source of ocean island basalt affinity is precluded by the relative depletion of high field strength elements, especially Nb which shows negative anomalies in chondrite-normalized patterns. On the contrary, a subduction-related origin for the LILE enrichment would be more consistent. It may be inferred that arc-like melts [enriched in Th and LREE (light rare earth elements) and depleted in Nb, with $ ɛNd_{i} $ > +5] were produced through partial melting of a depleted-mantle source, to which a small amount of crustally derived component had been added. The metarhyolites are enriched in LILE, and have a close genetic relationship with the metabasalts, as evidenced by their high $ ɛNd_{i} $ (from +4.7 to +6.8). Although the chemical evidence remains ambiguous, it is suggested that fractional crystallization, accompanied by subordinate assimilation, is the petrogenetic process most consistent with the data. The trondhjemites are isotopically distinct from the metarhyolites. Their $ ɛNd_{i} $ values (from −1.0 to +2.2) reflect an important contribution of continental crust to their genesis, and disprove their inferred cogenetism with the felsic volcanics. A review of modern environments in which such bimodal suites are exposed, shows that settings involving incipient rifting of a volcanic arc fringing a continental margin, or built upon young, thin continental crust might provide suitable analogues. Geodynamic reconstructions are complicated by subsequent tectonic events which disrupted the initial patterns, and by Mesozoic-Cenozoic sedimentary cover. However, this subduction-related magmatism enlarges the growing body of evidence for southward subduction processes until the Late Devonian during the evolution of the northern flank of the European Variscides. As a general implication, it is suggested that the combined use of the Sm-Nd system with incompatible elements relatively resistant during alteration and low-grade metamorphism (REE, Th, Zr, Nb) may provide diagnostic criteria for recognizing the tectonic setting of bimodal metaigneous suites in ancient orogenic belts. © Springer-Verlag Berlin Heidelberg 1997 |
abstractGer |
Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are characterized by a distinct enrichment in incompatible elements (e.g. Th and LREE) and positive $ ɛNd_{i} $ (from +5 to +8). Combined isotope and trace element systematics rule out crustal contamination of mafic melts as a suitable cause of the LILE (large ion lithophile element)-enrichment. Rather, a mixing process between a component similar to mid ocean ridge basalts and an enriched end-member with $ ɛNd_{i} $ > +5 is suggested. An enriched-mantle source of ocean island basalt affinity is precluded by the relative depletion of high field strength elements, especially Nb which shows negative anomalies in chondrite-normalized patterns. On the contrary, a subduction-related origin for the LILE enrichment would be more consistent. It may be inferred that arc-like melts [enriched in Th and LREE (light rare earth elements) and depleted in Nb, with $ ɛNd_{i} $ > +5] were produced through partial melting of a depleted-mantle source, to which a small amount of crustally derived component had been added. The metarhyolites are enriched in LILE, and have a close genetic relationship with the metabasalts, as evidenced by their high $ ɛNd_{i} $ (from +4.7 to +6.8). Although the chemical evidence remains ambiguous, it is suggested that fractional crystallization, accompanied by subordinate assimilation, is the petrogenetic process most consistent with the data. The trondhjemites are isotopically distinct from the metarhyolites. Their $ ɛNd_{i} $ values (from −1.0 to +2.2) reflect an important contribution of continental crust to their genesis, and disprove their inferred cogenetism with the felsic volcanics. A review of modern environments in which such bimodal suites are exposed, shows that settings involving incipient rifting of a volcanic arc fringing a continental margin, or built upon young, thin continental crust might provide suitable analogues. Geodynamic reconstructions are complicated by subsequent tectonic events which disrupted the initial patterns, and by Mesozoic-Cenozoic sedimentary cover. However, this subduction-related magmatism enlarges the growing body of evidence for southward subduction processes until the Late Devonian during the evolution of the northern flank of the European Variscides. As a general implication, it is suggested that the combined use of the Sm-Nd system with incompatible elements relatively resistant during alteration and low-grade metamorphism (REE, Th, Zr, Nb) may provide diagnostic criteria for recognizing the tectonic setting of bimodal metaigneous suites in ancient orogenic belts. © Springer-Verlag Berlin Heidelberg 1997 |
abstract_unstemmed |
Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are characterized by a distinct enrichment in incompatible elements (e.g. Th and LREE) and positive $ ɛNd_{i} $ (from +5 to +8). Combined isotope and trace element systematics rule out crustal contamination of mafic melts as a suitable cause of the LILE (large ion lithophile element)-enrichment. Rather, a mixing process between a component similar to mid ocean ridge basalts and an enriched end-member with $ ɛNd_{i} $ > +5 is suggested. An enriched-mantle source of ocean island basalt affinity is precluded by the relative depletion of high field strength elements, especially Nb which shows negative anomalies in chondrite-normalized patterns. On the contrary, a subduction-related origin for the LILE enrichment would be more consistent. It may be inferred that arc-like melts [enriched in Th and LREE (light rare earth elements) and depleted in Nb, with $ ɛNd_{i} $ > +5] were produced through partial melting of a depleted-mantle source, to which a small amount of crustally derived component had been added. The metarhyolites are enriched in LILE, and have a close genetic relationship with the metabasalts, as evidenced by their high $ ɛNd_{i} $ (from +4.7 to +6.8). Although the chemical evidence remains ambiguous, it is suggested that fractional crystallization, accompanied by subordinate assimilation, is the petrogenetic process most consistent with the data. The trondhjemites are isotopically distinct from the metarhyolites. Their $ ɛNd_{i} $ values (from −1.0 to +2.2) reflect an important contribution of continental crust to their genesis, and disprove their inferred cogenetism with the felsic volcanics. A review of modern environments in which such bimodal suites are exposed, shows that settings involving incipient rifting of a volcanic arc fringing a continental margin, or built upon young, thin continental crust might provide suitable analogues. Geodynamic reconstructions are complicated by subsequent tectonic events which disrupted the initial patterns, and by Mesozoic-Cenozoic sedimentary cover. However, this subduction-related magmatism enlarges the growing body of evidence for southward subduction processes until the Late Devonian during the evolution of the northern flank of the European Variscides. As a general implication, it is suggested that the combined use of the Sm-Nd system with incompatible elements relatively resistant during alteration and low-grade metamorphism (REE, Th, Zr, Nb) may provide diagnostic criteria for recognizing the tectonic setting of bimodal metaigneous suites in ancient orogenic belts. © Springer-Verlag Berlin Heidelberg 1997 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
2-3 |
title_short |
A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France) |
url |
https://doi.org/10.1007/s004100050334 |
remote_bool |
false |
author2 |
Paquette, Jean-Louis |
author2Str |
Paquette, Jean-Louis |
ppnlink |
129068721 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s004100050334 |
up_date |
2024-07-04T01:32:28.142Z |
_version_ |
1803610224739745792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070516628</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402225406.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s004100050334</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070516628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s004100050334-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pin, Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the Brévenne Series (NE Massif Central), a low-grade bimodal association of metabasalts and metarhyolites is exposed, together with intrusive trondhjemite bodies. Zircon U-Pb dating constrains their magmatic emplacement at 366 ± 5 Ma and 358 ± 1 Ma, respectively. The metabasalts are characterized by a distinct enrichment in incompatible elements (e.g. Th and LREE) and positive $ ɛNd_{i} $ (from +5 to +8). Combined isotope and trace element systematics rule out crustal contamination of mafic melts as a suitable cause of the LILE (large ion lithophile element)-enrichment. Rather, a mixing process between a component similar to mid ocean ridge basalts and an enriched end-member with $ ɛNd_{i} $ > +5 is suggested. An enriched-mantle source of ocean island basalt affinity is precluded by the relative depletion of high field strength elements, especially Nb which shows negative anomalies in chondrite-normalized patterns. On the contrary, a subduction-related origin for the LILE enrichment would be more consistent. It may be inferred that arc-like melts [enriched in Th and LREE (light rare earth elements) and depleted in Nb, with $ ɛNd_{i} $ > +5] were produced through partial melting of a depleted-mantle source, to which a small amount of crustally derived component had been added. The metarhyolites are enriched in LILE, and have a close genetic relationship with the metabasalts, as evidenced by their high $ ɛNd_{i} $ (from +4.7 to +6.8). Although the chemical evidence remains ambiguous, it is suggested that fractional crystallization, accompanied by subordinate assimilation, is the petrogenetic process most consistent with the data. The trondhjemites are isotopically distinct from the metarhyolites. Their $ ɛNd_{i} $ values (from −1.0 to +2.2) reflect an important contribution of continental crust to their genesis, and disprove their inferred cogenetism with the felsic volcanics. A review of modern environments in which such bimodal suites are exposed, shows that settings involving incipient rifting of a volcanic arc fringing a continental margin, or built upon young, thin continental crust might provide suitable analogues. Geodynamic reconstructions are complicated by subsequent tectonic events which disrupted the initial patterns, and by Mesozoic-Cenozoic sedimentary cover. However, this subduction-related magmatism enlarges the growing body of evidence for southward subduction processes until the Late Devonian during the evolution of the northern flank of the European Variscides. As a general implication, it is suggested that the combined use of the Sm-Nd system with incompatible elements relatively resistant during alteration and low-grade metamorphism (REE, Th, Zr, Nb) may provide diagnostic criteria for recognizing the tectonic setting of bimodal metaigneous suites in ancient orogenic belts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Devonian</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continental Crust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean Island Basalt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Field Strength Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean Ridge Basalt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paquette, Jean-Louis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Contributions to mineralogy and petrology</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">129(1997), 2-3 vom: Okt., Seite 222-238</subfield><subfield code="w">(DE-627)129068721</subfield><subfield code="w">(DE-600)1616-0</subfield><subfield code="w">(DE-576)014400367</subfield><subfield code="x">0010-7999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:129</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:2-3</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:222-238</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s004100050334</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">129</subfield><subfield code="j">1997</subfield><subfield code="e">2-3</subfield><subfield code="c">10</subfield><subfield code="h">222-238</subfield></datafield></record></collection>
|
score |
7.399987 |