Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism
Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + w...
Ausführliche Beschreibung
Autor*in: |
Gilotti, Jane A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2004 |
---|
Übergeordnetes Werk: |
Enthalten in: Contributions to mineralogy and petrology - Springer-Verlag, 1966, 148(2004), 2 vom: 28. Juli, Seite 216-235 |
---|---|
Übergeordnetes Werk: |
volume:148 ; year:2004 ; number:2 ; day:28 ; month:07 ; pages:216-235 |
Links: |
---|
DOI / URN: |
10.1007/s00410-004-0600-4 |
---|
Katalog-ID: |
OLC2070524167 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070524167 | ||
003 | DE-627 | ||
005 | 20230402225828.0 | ||
007 | tu | ||
008 | 200820s2004 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00410-004-0600-4 |2 doi | |
035 | |a (DE-627)OLC2070524167 | ||
035 | |a (DE-He213)s00410-004-0600-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 13 |2 ssgn | ||
084 | |a TE 1000 |q VZ |2 rvk | ||
100 | 1 | |a Gilotti, Jane A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism |
264 | 1 | |c 2004 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2004 | ||
520 | |a Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian. | ||
650 | 4 | |a Zircon | |
650 | 4 | |a Devonian | |
650 | 4 | |a Kyanite | |
650 | 4 | |a Inductively Couple Plasma Mass Spectrometer | |
650 | 4 | |a Isochron | |
700 | 1 | |a Nutman, Allen P. |4 aut | |
700 | 1 | |a Brueckner, Hannes K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Contributions to mineralogy and petrology |d Springer-Verlag, 1966 |g 148(2004), 2 vom: 28. Juli, Seite 216-235 |w (DE-627)129068721 |w (DE-600)1616-0 |w (DE-576)014400367 |x 0010-7999 |7 nnns |
773 | 1 | 8 | |g volume:148 |g year:2004 |g number:2 |g day:28 |g month:07 |g pages:216-235 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00410-004-0600-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4309 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a TE 1000 |
951 | |a AR | ||
952 | |d 148 |j 2004 |e 2 |b 28 |c 07 |h 216-235 |
author_variant |
j a g ja jag a p n ap apn h k b hk hkb |
---|---|
matchkey_str |
article:00107999:2004----::eoinoabnfrucliinnhgenadaeoieubicnnsnaeohgpesr |
hierarchy_sort_str |
2004 |
publishDate |
2004 |
allfields |
10.1007/s00410-004-0600-4 doi (DE-627)OLC2070524167 (DE-He213)s00410-004-0600-4-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Gilotti, Jane A. verfasserin aut Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2004 Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian. Zircon Devonian Kyanite Inductively Couple Plasma Mass Spectrometer Isochron Nutman, Allen P. aut Brueckner, Hannes K. aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 148(2004), 2 vom: 28. Juli, Seite 216-235 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:148 year:2004 number:2 day:28 month:07 pages:216-235 https://doi.org/10.1007/s00410-004-0600-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_381 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4309 GBV_ILN_4311 GBV_ILN_4323 TE 1000 AR 148 2004 2 28 07 216-235 |
spelling |
10.1007/s00410-004-0600-4 doi (DE-627)OLC2070524167 (DE-He213)s00410-004-0600-4-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Gilotti, Jane A. verfasserin aut Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2004 Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian. Zircon Devonian Kyanite Inductively Couple Plasma Mass Spectrometer Isochron Nutman, Allen P. aut Brueckner, Hannes K. aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 148(2004), 2 vom: 28. Juli, Seite 216-235 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:148 year:2004 number:2 day:28 month:07 pages:216-235 https://doi.org/10.1007/s00410-004-0600-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_381 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4309 GBV_ILN_4311 GBV_ILN_4323 TE 1000 AR 148 2004 2 28 07 216-235 |
allfields_unstemmed |
10.1007/s00410-004-0600-4 doi (DE-627)OLC2070524167 (DE-He213)s00410-004-0600-4-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Gilotti, Jane A. verfasserin aut Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2004 Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian. Zircon Devonian Kyanite Inductively Couple Plasma Mass Spectrometer Isochron Nutman, Allen P. aut Brueckner, Hannes K. aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 148(2004), 2 vom: 28. Juli, Seite 216-235 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:148 year:2004 number:2 day:28 month:07 pages:216-235 https://doi.org/10.1007/s00410-004-0600-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_381 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4309 GBV_ILN_4311 GBV_ILN_4323 TE 1000 AR 148 2004 2 28 07 216-235 |
allfieldsGer |
10.1007/s00410-004-0600-4 doi (DE-627)OLC2070524167 (DE-He213)s00410-004-0600-4-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Gilotti, Jane A. verfasserin aut Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2004 Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian. Zircon Devonian Kyanite Inductively Couple Plasma Mass Spectrometer Isochron Nutman, Allen P. aut Brueckner, Hannes K. aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 148(2004), 2 vom: 28. Juli, Seite 216-235 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:148 year:2004 number:2 day:28 month:07 pages:216-235 https://doi.org/10.1007/s00410-004-0600-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_381 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4309 GBV_ILN_4311 GBV_ILN_4323 TE 1000 AR 148 2004 2 28 07 216-235 |
allfieldsSound |
10.1007/s00410-004-0600-4 doi (DE-627)OLC2070524167 (DE-He213)s00410-004-0600-4-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Gilotti, Jane A. verfasserin aut Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2004 Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian. Zircon Devonian Kyanite Inductively Couple Plasma Mass Spectrometer Isochron Nutman, Allen P. aut Brueckner, Hannes K. aut Enthalten in Contributions to mineralogy and petrology Springer-Verlag, 1966 148(2004), 2 vom: 28. Juli, Seite 216-235 (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:148 year:2004 number:2 day:28 month:07 pages:216-235 https://doi.org/10.1007/s00410-004-0600-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_381 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4309 GBV_ILN_4311 GBV_ILN_4323 TE 1000 AR 148 2004 2 28 07 216-235 |
language |
English |
source |
Enthalten in Contributions to mineralogy and petrology 148(2004), 2 vom: 28. Juli, Seite 216-235 volume:148 year:2004 number:2 day:28 month:07 pages:216-235 |
sourceStr |
Enthalten in Contributions to mineralogy and petrology 148(2004), 2 vom: 28. Juli, Seite 216-235 volume:148 year:2004 number:2 day:28 month:07 pages:216-235 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Zircon Devonian Kyanite Inductively Couple Plasma Mass Spectrometer Isochron |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Contributions to mineralogy and petrology |
authorswithroles_txt_mv |
Gilotti, Jane A. @@aut@@ Nutman, Allen P. @@aut@@ Brueckner, Hannes K. @@aut@@ |
publishDateDaySort_date |
2004-07-28T00:00:00Z |
hierarchy_top_id |
129068721 |
dewey-sort |
3550 |
id |
OLC2070524167 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070524167</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402225828.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00410-004-0600-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070524167</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00410-004-0600-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilotti, Jane A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zircon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Devonian</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kyanite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inductively Couple Plasma Mass Spectrometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isochron</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nutman, Allen P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brueckner, Hannes K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Contributions to mineralogy and petrology</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">148(2004), 2 vom: 28. Juli, Seite 216-235</subfield><subfield code="w">(DE-627)129068721</subfield><subfield code="w">(DE-600)1616-0</subfield><subfield code="w">(DE-576)014400367</subfield><subfield code="x">0010-7999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:148</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:2</subfield><subfield code="g">day:28</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:216-235</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00410-004-0600-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">148</subfield><subfield code="j">2004</subfield><subfield code="e">2</subfield><subfield code="b">28</subfield><subfield code="c">07</subfield><subfield code="h">216-235</subfield></datafield></record></collection>
|
author |
Gilotti, Jane A. |
spellingShingle |
Gilotti, Jane A. ddc 550 ssgn 13 rvk TE 1000 misc Zircon misc Devonian misc Kyanite misc Inductively Couple Plasma Mass Spectrometer misc Isochron Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism |
authorStr |
Gilotti, Jane A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129068721 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-7999 |
topic_title |
550 VZ 13 ssgn TE 1000 VZ rvk Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism Zircon Devonian Kyanite Inductively Couple Plasma Mass Spectrometer Isochron |
topic |
ddc 550 ssgn 13 rvk TE 1000 misc Zircon misc Devonian misc Kyanite misc Inductively Couple Plasma Mass Spectrometer misc Isochron |
topic_unstemmed |
ddc 550 ssgn 13 rvk TE 1000 misc Zircon misc Devonian misc Kyanite misc Inductively Couple Plasma Mass Spectrometer misc Isochron |
topic_browse |
ddc 550 ssgn 13 rvk TE 1000 misc Zircon misc Devonian misc Kyanite misc Inductively Couple Plasma Mass Spectrometer misc Isochron |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Contributions to mineralogy and petrology |
hierarchy_parent_id |
129068721 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Contributions to mineralogy and petrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 |
title |
Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism |
ctrlnum |
(DE-627)OLC2070524167 (DE-He213)s00410-004-0600-4-p |
title_full |
Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism |
author_sort |
Gilotti, Jane A. |
journal |
Contributions to mineralogy and petrology |
journalStr |
Contributions to mineralogy and petrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
txt |
container_start_page |
216 |
author_browse |
Gilotti, Jane A. Nutman, Allen P. Brueckner, Hannes K. |
container_volume |
148 |
class |
550 VZ 13 ssgn TE 1000 VZ rvk |
format_se |
Aufsätze |
author-letter |
Gilotti, Jane A. |
doi_str_mv |
10.1007/s00410-004-0600-4 |
dewey-full |
550 |
title_sort |
devonian to carboniferous collision in the greenland caledonides: u-pb zircon and sm-nd ages of high-pressure and ultrahigh-pressure metamorphism |
title_auth |
Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism |
abstract |
Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian. © Springer-Verlag 2004 |
abstractGer |
Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian. © Springer-Verlag 2004 |
abstract_unstemmed |
Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian. © Springer-Verlag 2004 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_381 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4309 GBV_ILN_4311 GBV_ILN_4323 |
container_issue |
2 |
title_short |
Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism |
url |
https://doi.org/10.1007/s00410-004-0600-4 |
remote_bool |
false |
author2 |
Nutman, Allen P. Brueckner, Hannes K. |
author2Str |
Nutman, Allen P. Brueckner, Hannes K. |
ppnlink |
129068721 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00410-004-0600-4 |
up_date |
2024-07-04T01:34:03.864Z |
_version_ |
1803610325111537664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070524167</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402225828.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00410-004-0600-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070524167</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00410-004-0600-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilotti, Jane A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zircon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Devonian</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kyanite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inductively Couple Plasma Mass Spectrometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isochron</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nutman, Allen P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brueckner, Hannes K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Contributions to mineralogy and petrology</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">148(2004), 2 vom: 28. Juli, Seite 216-235</subfield><subfield code="w">(DE-627)129068721</subfield><subfield code="w">(DE-600)1616-0</subfield><subfield code="w">(DE-576)014400367</subfield><subfield code="x">0010-7999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:148</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:2</subfield><subfield code="g">day:28</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:216-235</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00410-004-0600-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">148</subfield><subfield code="j">2004</subfield><subfield code="e">2</subfield><subfield code="b">28</subfield><subfield code="c">07</subfield><subfield code="h">216-235</subfield></datafield></record></collection>
|
score |
7.40149 |