An analysis of history matching errors
Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted su...
Ausführliche Beschreibung
Autor*in: |
Tavassoli, Z. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, Inc. 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Computational geosciences - Springer Netherlands, 1997, 9(2005), 2-3 vom: Sept., Seite 99-123 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2005 ; number:2-3 ; month:09 ; pages:99-123 |
Links: |
---|
DOI / URN: |
10.1007/s10596-005-9001-7 |
---|
Katalog-ID: |
OLC2070601676 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070601676 | ||
003 | DE-627 | ||
005 | 20230503031113.0 | ||
007 | tu | ||
008 | 200819s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10596-005-9001-7 |2 doi | |
035 | |a (DE-627)OLC2070601676 | ||
035 | |a (DE-He213)s10596-005-9001-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |a 550 |q VZ |
084 | |a 13 |2 ssgn | ||
100 | 1 | |a Tavassoli, Z. |e verfasserin |4 aut | |
245 | 1 | 0 | |a An analysis of history matching errors |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, Inc. 2005 | ||
520 | |a Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast. | ||
650 | 4 | |a history matching | |
650 | 4 | |a inverse problems | |
650 | 4 | |a uncertainty | |
650 | 4 | |a error analysis | |
650 | 4 | |a likelihood | |
650 | 4 | |a sum of squares | |
700 | 1 | |a Carter, Jonathan N. |4 aut | |
700 | 1 | |a King, Peter R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computational geosciences |d Springer Netherlands, 1997 |g 9(2005), 2-3 vom: Sept., Seite 99-123 |w (DE-627)227875524 |w (DE-600)1380893-X |w (DE-576)05914839X |x 1420-0597 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2005 |g number:2-3 |g month:09 |g pages:99-123 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10596-005-9001-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2027 | ||
951 | |a AR | ||
952 | |d 9 |j 2005 |e 2-3 |c 09 |h 99-123 |
author_variant |
z t zt j n c jn jnc p r k pr prk |
---|---|
matchkey_str |
article:14200597:2005----::nnlssfitrmth |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s10596-005-9001-7 doi (DE-627)OLC2070601676 (DE-He213)s10596-005-9001-7-p DE-627 ger DE-627 rakwb eng 630 640 550 VZ 13 ssgn Tavassoli, Z. verfasserin aut An analysis of history matching errors 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast. history matching inverse problems uncertainty error analysis likelihood sum of squares Carter, Jonathan N. aut King, Peter R. aut Enthalten in Computational geosciences Springer Netherlands, 1997 9(2005), 2-3 vom: Sept., Seite 99-123 (DE-627)227875524 (DE-600)1380893-X (DE-576)05914839X 1420-0597 nnns volume:9 year:2005 number:2-3 month:09 pages:99-123 https://doi.org/10.1007/s10596-005-9001-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO GBV_ILN_70 GBV_ILN_2027 AR 9 2005 2-3 09 99-123 |
spelling |
10.1007/s10596-005-9001-7 doi (DE-627)OLC2070601676 (DE-He213)s10596-005-9001-7-p DE-627 ger DE-627 rakwb eng 630 640 550 VZ 13 ssgn Tavassoli, Z. verfasserin aut An analysis of history matching errors 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast. history matching inverse problems uncertainty error analysis likelihood sum of squares Carter, Jonathan N. aut King, Peter R. aut Enthalten in Computational geosciences Springer Netherlands, 1997 9(2005), 2-3 vom: Sept., Seite 99-123 (DE-627)227875524 (DE-600)1380893-X (DE-576)05914839X 1420-0597 nnns volume:9 year:2005 number:2-3 month:09 pages:99-123 https://doi.org/10.1007/s10596-005-9001-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO GBV_ILN_70 GBV_ILN_2027 AR 9 2005 2-3 09 99-123 |
allfields_unstemmed |
10.1007/s10596-005-9001-7 doi (DE-627)OLC2070601676 (DE-He213)s10596-005-9001-7-p DE-627 ger DE-627 rakwb eng 630 640 550 VZ 13 ssgn Tavassoli, Z. verfasserin aut An analysis of history matching errors 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast. history matching inverse problems uncertainty error analysis likelihood sum of squares Carter, Jonathan N. aut King, Peter R. aut Enthalten in Computational geosciences Springer Netherlands, 1997 9(2005), 2-3 vom: Sept., Seite 99-123 (DE-627)227875524 (DE-600)1380893-X (DE-576)05914839X 1420-0597 nnns volume:9 year:2005 number:2-3 month:09 pages:99-123 https://doi.org/10.1007/s10596-005-9001-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO GBV_ILN_70 GBV_ILN_2027 AR 9 2005 2-3 09 99-123 |
allfieldsGer |
10.1007/s10596-005-9001-7 doi (DE-627)OLC2070601676 (DE-He213)s10596-005-9001-7-p DE-627 ger DE-627 rakwb eng 630 640 550 VZ 13 ssgn Tavassoli, Z. verfasserin aut An analysis of history matching errors 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast. history matching inverse problems uncertainty error analysis likelihood sum of squares Carter, Jonathan N. aut King, Peter R. aut Enthalten in Computational geosciences Springer Netherlands, 1997 9(2005), 2-3 vom: Sept., Seite 99-123 (DE-627)227875524 (DE-600)1380893-X (DE-576)05914839X 1420-0597 nnns volume:9 year:2005 number:2-3 month:09 pages:99-123 https://doi.org/10.1007/s10596-005-9001-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO GBV_ILN_70 GBV_ILN_2027 AR 9 2005 2-3 09 99-123 |
allfieldsSound |
10.1007/s10596-005-9001-7 doi (DE-627)OLC2070601676 (DE-He213)s10596-005-9001-7-p DE-627 ger DE-627 rakwb eng 630 640 550 VZ 13 ssgn Tavassoli, Z. verfasserin aut An analysis of history matching errors 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast. history matching inverse problems uncertainty error analysis likelihood sum of squares Carter, Jonathan N. aut King, Peter R. aut Enthalten in Computational geosciences Springer Netherlands, 1997 9(2005), 2-3 vom: Sept., Seite 99-123 (DE-627)227875524 (DE-600)1380893-X (DE-576)05914839X 1420-0597 nnns volume:9 year:2005 number:2-3 month:09 pages:99-123 https://doi.org/10.1007/s10596-005-9001-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO GBV_ILN_70 GBV_ILN_2027 AR 9 2005 2-3 09 99-123 |
language |
English |
source |
Enthalten in Computational geosciences 9(2005), 2-3 vom: Sept., Seite 99-123 volume:9 year:2005 number:2-3 month:09 pages:99-123 |
sourceStr |
Enthalten in Computational geosciences 9(2005), 2-3 vom: Sept., Seite 99-123 volume:9 year:2005 number:2-3 month:09 pages:99-123 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
history matching inverse problems uncertainty error analysis likelihood sum of squares |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Computational geosciences |
authorswithroles_txt_mv |
Tavassoli, Z. @@aut@@ Carter, Jonathan N. @@aut@@ King, Peter R. @@aut@@ |
publishDateDaySort_date |
2005-09-01T00:00:00Z |
hierarchy_top_id |
227875524 |
dewey-sort |
3630 |
id |
OLC2070601676 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070601676</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503031113.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10596-005-9001-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070601676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10596-005-9001-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tavassoli, Z.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An analysis of history matching errors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">history matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inverse problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">error analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">likelihood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sum of squares</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carter, Jonathan N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">King, Peter R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational geosciences</subfield><subfield code="d">Springer Netherlands, 1997</subfield><subfield code="g">9(2005), 2-3 vom: Sept., Seite 99-123</subfield><subfield code="w">(DE-627)227875524</subfield><subfield code="w">(DE-600)1380893-X</subfield><subfield code="w">(DE-576)05914839X</subfield><subfield code="x">1420-0597</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:2-3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:99-123</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10596-005-9001-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2005</subfield><subfield code="e">2-3</subfield><subfield code="c">09</subfield><subfield code="h">99-123</subfield></datafield></record></collection>
|
author |
Tavassoli, Z. |
spellingShingle |
Tavassoli, Z. ddc 630 ssgn 13 misc history matching misc inverse problems misc uncertainty misc error analysis misc likelihood misc sum of squares An analysis of history matching errors |
authorStr |
Tavassoli, Z. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)227875524 |
format |
Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1420-0597 |
topic_title |
630 640 550 VZ 13 ssgn An analysis of history matching errors history matching inverse problems uncertainty error analysis likelihood sum of squares |
topic |
ddc 630 ssgn 13 misc history matching misc inverse problems misc uncertainty misc error analysis misc likelihood misc sum of squares |
topic_unstemmed |
ddc 630 ssgn 13 misc history matching misc inverse problems misc uncertainty misc error analysis misc likelihood misc sum of squares |
topic_browse |
ddc 630 ssgn 13 misc history matching misc inverse problems misc uncertainty misc error analysis misc likelihood misc sum of squares |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Computational geosciences |
hierarchy_parent_id |
227875524 |
dewey-tens |
630 - Agriculture 640 - Home & family management 550 - Earth sciences & geology |
hierarchy_top_title |
Computational geosciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)227875524 (DE-600)1380893-X (DE-576)05914839X |
title |
An analysis of history matching errors |
ctrlnum |
(DE-627)OLC2070601676 (DE-He213)s10596-005-9001-7-p |
title_full |
An analysis of history matching errors |
author_sort |
Tavassoli, Z. |
journal |
Computational geosciences |
journalStr |
Computational geosciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
99 |
author_browse |
Tavassoli, Z. Carter, Jonathan N. King, Peter R. |
container_volume |
9 |
class |
630 640 550 VZ 13 ssgn |
format_se |
Aufsätze |
author-letter |
Tavassoli, Z. |
doi_str_mv |
10.1007/s10596-005-9001-7 |
dewey-full |
630 640 550 |
title_sort |
an analysis of history matching errors |
title_auth |
An analysis of history matching errors |
abstract |
Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast. © Springer Science+Business Media, Inc. 2005 |
abstractGer |
Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast. © Springer Science+Business Media, Inc. 2005 |
abstract_unstemmed |
Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast. © Springer Science+Business Media, Inc. 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO GBV_ILN_70 GBV_ILN_2027 |
container_issue |
2-3 |
title_short |
An analysis of history matching errors |
url |
https://doi.org/10.1007/s10596-005-9001-7 |
remote_bool |
false |
author2 |
Carter, Jonathan N. King, Peter R. |
author2Str |
Carter, Jonathan N. King, Peter R. |
ppnlink |
227875524 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10596-005-9001-7 |
up_date |
2024-07-04T01:45:56.459Z |
_version_ |
1803611072322600960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070601676</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503031113.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10596-005-9001-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070601676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10596-005-9001-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tavassoli, Z.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An analysis of history matching errors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">history matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inverse problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">error analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">likelihood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sum of squares</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carter, Jonathan N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">King, Peter R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational geosciences</subfield><subfield code="d">Springer Netherlands, 1997</subfield><subfield code="g">9(2005), 2-3 vom: Sept., Seite 99-123</subfield><subfield code="w">(DE-627)227875524</subfield><subfield code="w">(DE-600)1380893-X</subfield><subfield code="w">(DE-576)05914839X</subfield><subfield code="x">1420-0597</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:2-3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:99-123</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10596-005-9001-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2005</subfield><subfield code="e">2-3</subfield><subfield code="c">09</subfield><subfield code="h">99-123</subfield></datafield></record></collection>
|
score |
7.401101 |