Uniting Local and Global Controllers with Robustness to Vanishing Noise
Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being...
Ausführliche Beschreibung
Autor*in: |
Prieur, Christophe [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2001 |
---|
Anmerkung: |
© Springer-Verlag London Limited 2001 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematics of control, signals, and systems - Springer-Verlag London Limited, 1988, 14(2001), 2 vom: Mai, Seite 143-172 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2001 ; number:2 ; month:05 ; pages:143-172 |
Links: |
---|
DOI / URN: |
10.1007/PL00009880 |
---|
Katalog-ID: |
OLC2070613178 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070613178 | ||
003 | DE-627 | ||
005 | 20230502111357.0 | ||
007 | tu | ||
008 | 200820s2001 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/PL00009880 |2 doi | |
035 | |a (DE-627)OLC2070613178 | ||
035 | |a (DE-He213)PL00009880-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 620 |q VZ |
084 | |a 11 |2 ssgn | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Prieur, Christophe |e verfasserin |4 aut | |
245 | 1 | 0 | |a Uniting Local and Global Controllers with Robustness to Vanishing Noise |
264 | 1 | |c 2001 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Limited 2001 | ||
520 | |a Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being equal to the local feedback on a neighborhood of the origin, equal to the global one outside of a larger neighborhood and being a globally stabilizing controller. We study several solutions based on continuous, discontinuous, hybrid, time-varying controllers. One criterion of the selection of a controller is the robustness of the stability to vanishing noise. This leads us in particular to consider a kind of generalization of Krasovskii trajectories for hybrid systems. | ||
773 | 0 | 8 | |i Enthalten in |t Mathematics of control, signals, and systems |d Springer-Verlag London Limited, 1988 |g 14(2001), 2 vom: Mai, Seite 143-172 |w (DE-627)12928646X |w (DE-600)94251-0 |w (DE-576)017945615 |x 0932-4194 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2001 |g number:2 |g month:05 |g pages:143-172 |
856 | 4 | 1 | |u https://doi.org/10.1007/PL00009880 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4319 | ||
936 | b | k | |a 54.00 |q VZ |
951 | |a AR | ||
952 | |d 14 |j 2001 |e 2 |c 05 |h 143-172 |
author_variant |
c p cp |
---|---|
matchkey_str |
article:09324194:2001----::ntnlclngoacnrlesihoute |
hierarchy_sort_str |
2001 |
bklnumber |
54.00 |
publishDate |
2001 |
allfields |
10.1007/PL00009880 doi (DE-627)OLC2070613178 (DE-He213)PL00009880-p DE-627 ger DE-627 rakwb eng 510 620 VZ 11 ssgn 54.00 bkl Prieur, Christophe verfasserin aut Uniting Local and Global Controllers with Robustness to Vanishing Noise 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2001 Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being equal to the local feedback on a neighborhood of the origin, equal to the global one outside of a larger neighborhood and being a globally stabilizing controller. We study several solutions based on continuous, discontinuous, hybrid, time-varying controllers. One criterion of the selection of a controller is the robustness of the stability to vanishing noise. This leads us in particular to consider a kind of generalization of Krasovskii trajectories for hybrid systems. Enthalten in Mathematics of control, signals, and systems Springer-Verlag London Limited, 1988 14(2001), 2 vom: Mai, Seite 143-172 (DE-627)12928646X (DE-600)94251-0 (DE-576)017945615 0932-4194 nnns volume:14 year:2001 number:2 month:05 pages:143-172 https://doi.org/10.1007/PL00009880 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_95 GBV_ILN_105 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4319 54.00 VZ AR 14 2001 2 05 143-172 |
spelling |
10.1007/PL00009880 doi (DE-627)OLC2070613178 (DE-He213)PL00009880-p DE-627 ger DE-627 rakwb eng 510 620 VZ 11 ssgn 54.00 bkl Prieur, Christophe verfasserin aut Uniting Local and Global Controllers with Robustness to Vanishing Noise 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2001 Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being equal to the local feedback on a neighborhood of the origin, equal to the global one outside of a larger neighborhood and being a globally stabilizing controller. We study several solutions based on continuous, discontinuous, hybrid, time-varying controllers. One criterion of the selection of a controller is the robustness of the stability to vanishing noise. This leads us in particular to consider a kind of generalization of Krasovskii trajectories for hybrid systems. Enthalten in Mathematics of control, signals, and systems Springer-Verlag London Limited, 1988 14(2001), 2 vom: Mai, Seite 143-172 (DE-627)12928646X (DE-600)94251-0 (DE-576)017945615 0932-4194 nnns volume:14 year:2001 number:2 month:05 pages:143-172 https://doi.org/10.1007/PL00009880 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_95 GBV_ILN_105 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4319 54.00 VZ AR 14 2001 2 05 143-172 |
allfields_unstemmed |
10.1007/PL00009880 doi (DE-627)OLC2070613178 (DE-He213)PL00009880-p DE-627 ger DE-627 rakwb eng 510 620 VZ 11 ssgn 54.00 bkl Prieur, Christophe verfasserin aut Uniting Local and Global Controllers with Robustness to Vanishing Noise 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2001 Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being equal to the local feedback on a neighborhood of the origin, equal to the global one outside of a larger neighborhood and being a globally stabilizing controller. We study several solutions based on continuous, discontinuous, hybrid, time-varying controllers. One criterion of the selection of a controller is the robustness of the stability to vanishing noise. This leads us in particular to consider a kind of generalization of Krasovskii trajectories for hybrid systems. Enthalten in Mathematics of control, signals, and systems Springer-Verlag London Limited, 1988 14(2001), 2 vom: Mai, Seite 143-172 (DE-627)12928646X (DE-600)94251-0 (DE-576)017945615 0932-4194 nnns volume:14 year:2001 number:2 month:05 pages:143-172 https://doi.org/10.1007/PL00009880 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_95 GBV_ILN_105 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4319 54.00 VZ AR 14 2001 2 05 143-172 |
allfieldsGer |
10.1007/PL00009880 doi (DE-627)OLC2070613178 (DE-He213)PL00009880-p DE-627 ger DE-627 rakwb eng 510 620 VZ 11 ssgn 54.00 bkl Prieur, Christophe verfasserin aut Uniting Local and Global Controllers with Robustness to Vanishing Noise 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2001 Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being equal to the local feedback on a neighborhood of the origin, equal to the global one outside of a larger neighborhood and being a globally stabilizing controller. We study several solutions based on continuous, discontinuous, hybrid, time-varying controllers. One criterion of the selection of a controller is the robustness of the stability to vanishing noise. This leads us in particular to consider a kind of generalization of Krasovskii trajectories for hybrid systems. Enthalten in Mathematics of control, signals, and systems Springer-Verlag London Limited, 1988 14(2001), 2 vom: Mai, Seite 143-172 (DE-627)12928646X (DE-600)94251-0 (DE-576)017945615 0932-4194 nnns volume:14 year:2001 number:2 month:05 pages:143-172 https://doi.org/10.1007/PL00009880 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_95 GBV_ILN_105 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4319 54.00 VZ AR 14 2001 2 05 143-172 |
allfieldsSound |
10.1007/PL00009880 doi (DE-627)OLC2070613178 (DE-He213)PL00009880-p DE-627 ger DE-627 rakwb eng 510 620 VZ 11 ssgn 54.00 bkl Prieur, Christophe verfasserin aut Uniting Local and Global Controllers with Robustness to Vanishing Noise 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2001 Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being equal to the local feedback on a neighborhood of the origin, equal to the global one outside of a larger neighborhood and being a globally stabilizing controller. We study several solutions based on continuous, discontinuous, hybrid, time-varying controllers. One criterion of the selection of a controller is the robustness of the stability to vanishing noise. This leads us in particular to consider a kind of generalization of Krasovskii trajectories for hybrid systems. Enthalten in Mathematics of control, signals, and systems Springer-Verlag London Limited, 1988 14(2001), 2 vom: Mai, Seite 143-172 (DE-627)12928646X (DE-600)94251-0 (DE-576)017945615 0932-4194 nnns volume:14 year:2001 number:2 month:05 pages:143-172 https://doi.org/10.1007/PL00009880 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_95 GBV_ILN_105 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4319 54.00 VZ AR 14 2001 2 05 143-172 |
language |
English |
source |
Enthalten in Mathematics of control, signals, and systems 14(2001), 2 vom: Mai, Seite 143-172 volume:14 year:2001 number:2 month:05 pages:143-172 |
sourceStr |
Enthalten in Mathematics of control, signals, and systems 14(2001), 2 vom: Mai, Seite 143-172 volume:14 year:2001 number:2 month:05 pages:143-172 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematics of control, signals, and systems |
authorswithroles_txt_mv |
Prieur, Christophe @@aut@@ |
publishDateDaySort_date |
2001-05-01T00:00:00Z |
hierarchy_top_id |
12928646X |
dewey-sort |
3510 |
id |
OLC2070613178 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070613178</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111357.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/PL00009880</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070613178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)PL00009880-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prieur, Christophe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Uniting Local and Global Controllers with Robustness to Vanishing Noise</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being equal to the local feedback on a neighborhood of the origin, equal to the global one outside of a larger neighborhood and being a globally stabilizing controller. We study several solutions based on continuous, discontinuous, hybrid, time-varying controllers. One criterion of the selection of a controller is the robustness of the stability to vanishing noise. This leads us in particular to consider a kind of generalization of Krasovskii trajectories for hybrid systems.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematics of control, signals, and systems</subfield><subfield code="d">Springer-Verlag London Limited, 1988</subfield><subfield code="g">14(2001), 2 vom: Mai, Seite 143-172</subfield><subfield code="w">(DE-627)12928646X</subfield><subfield code="w">(DE-600)94251-0</subfield><subfield code="w">(DE-576)017945615</subfield><subfield code="x">0932-4194</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:2</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:143-172</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/PL00009880</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2001</subfield><subfield code="e">2</subfield><subfield code="c">05</subfield><subfield code="h">143-172</subfield></datafield></record></collection>
|
author |
Prieur, Christophe |
spellingShingle |
Prieur, Christophe ddc 510 ssgn 11 bkl 54.00 Uniting Local and Global Controllers with Robustness to Vanishing Noise |
authorStr |
Prieur, Christophe |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12928646X |
format |
Article |
dewey-ones |
510 - Mathematics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0932-4194 |
topic_title |
510 620 VZ 11 ssgn 54.00 bkl Uniting Local and Global Controllers with Robustness to Vanishing Noise |
topic |
ddc 510 ssgn 11 bkl 54.00 |
topic_unstemmed |
ddc 510 ssgn 11 bkl 54.00 |
topic_browse |
ddc 510 ssgn 11 bkl 54.00 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematics of control, signals, and systems |
hierarchy_parent_id |
12928646X |
dewey-tens |
510 - Mathematics 620 - Engineering |
hierarchy_top_title |
Mathematics of control, signals, and systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12928646X (DE-600)94251-0 (DE-576)017945615 |
title |
Uniting Local and Global Controllers with Robustness to Vanishing Noise |
ctrlnum |
(DE-627)OLC2070613178 (DE-He213)PL00009880-p |
title_full |
Uniting Local and Global Controllers with Robustness to Vanishing Noise |
author_sort |
Prieur, Christophe |
journal |
Mathematics of control, signals, and systems |
journalStr |
Mathematics of control, signals, and systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2001 |
contenttype_str_mv |
txt |
container_start_page |
143 |
author_browse |
Prieur, Christophe |
container_volume |
14 |
class |
510 620 VZ 11 ssgn 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Prieur, Christophe |
doi_str_mv |
10.1007/PL00009880 |
dewey-full |
510 620 |
title_sort |
uniting local and global controllers with robustness to vanishing noise |
title_auth |
Uniting Local and Global Controllers with Robustness to Vanishing Noise |
abstract |
Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being equal to the local feedback on a neighborhood of the origin, equal to the global one outside of a larger neighborhood and being a globally stabilizing controller. We study several solutions based on continuous, discontinuous, hybrid, time-varying controllers. One criterion of the selection of a controller is the robustness of the stability to vanishing noise. This leads us in particular to consider a kind of generalization of Krasovskii trajectories for hybrid systems. © Springer-Verlag London Limited 2001 |
abstractGer |
Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being equal to the local feedback on a neighborhood of the origin, equal to the global one outside of a larger neighborhood and being a globally stabilizing controller. We study several solutions based on continuous, discontinuous, hybrid, time-varying controllers. One criterion of the selection of a controller is the robustness of the stability to vanishing noise. This leads us in particular to consider a kind of generalization of Krasovskii trajectories for hybrid systems. © Springer-Verlag London Limited 2001 |
abstract_unstemmed |
Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being equal to the local feedback on a neighborhood of the origin, equal to the global one outside of a larger neighborhood and being a globally stabilizing controller. We study several solutions based on continuous, discontinuous, hybrid, time-varying controllers. One criterion of the selection of a controller is the robustness of the stability to vanishing noise. This leads us in particular to consider a kind of generalization of Krasovskii trajectories for hybrid systems. © Springer-Verlag London Limited 2001 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_95 GBV_ILN_105 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4310 GBV_ILN_4315 GBV_ILN_4319 |
container_issue |
2 |
title_short |
Uniting Local and Global Controllers with Robustness to Vanishing Noise |
url |
https://doi.org/10.1007/PL00009880 |
remote_bool |
false |
ppnlink |
12928646X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/PL00009880 |
up_date |
2024-07-04T01:47:52.378Z |
_version_ |
1803611193871433728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070613178</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111357.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/PL00009880</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070613178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)PL00009880-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prieur, Christophe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Uniting Local and Global Controllers with Robustness to Vanishing Noise</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. We consider control systems for which we know two stabilizing controllers. One is globally asymptotically stabilizing, the other one is only locally asymptotically stabilizing but for some reason we insist on using it in a neighborhood of the origin. We look for a uniting control law being equal to the local feedback on a neighborhood of the origin, equal to the global one outside of a larger neighborhood and being a globally stabilizing controller. We study several solutions based on continuous, discontinuous, hybrid, time-varying controllers. One criterion of the selection of a controller is the robustness of the stability to vanishing noise. This leads us in particular to consider a kind of generalization of Krasovskii trajectories for hybrid systems.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematics of control, signals, and systems</subfield><subfield code="d">Springer-Verlag London Limited, 1988</subfield><subfield code="g">14(2001), 2 vom: Mai, Seite 143-172</subfield><subfield code="w">(DE-627)12928646X</subfield><subfield code="w">(DE-600)94251-0</subfield><subfield code="w">(DE-576)017945615</subfield><subfield code="x">0932-4194</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:2</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:143-172</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/PL00009880</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2001</subfield><subfield code="e">2</subfield><subfield code="c">05</subfield><subfield code="h">143-172</subfield></datafield></record></collection>
|
score |
7.40096 |