Modeling studies of the upper ocean response to a tropical cyclone
Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling sy...
Ausführliche Beschreibung
Autor*in: |
Morey, Steven L. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2006 |
---|
Übergeordnetes Werk: |
Enthalten in: Ocean dynamics - Springer-Verlag, 2001, 56(2006), 5-6 vom: 20. Juni, Seite 594-606 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2006 ; number:5-6 ; day:20 ; month:06 ; pages:594-606 |
Links: |
---|
DOI / URN: |
10.1007/s10236-006-0085-y |
---|
Katalog-ID: |
OLC2070856569 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070856569 | ||
003 | DE-627 | ||
005 | 20230502180211.0 | ||
007 | tu | ||
008 | 200820s2006 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10236-006-0085-y |2 doi | |
035 | |a (DE-627)OLC2070856569 | ||
035 | |a (DE-He213)s10236-006-0085-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 14 |2 ssgn | ||
084 | |a 38.90$jOzeanologie$jOzeanographie |2 bkl | ||
100 | 1 | |a Morey, Steven L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling studies of the upper ocean response to a tropical cyclone |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2006 | ||
520 | |a Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/$ m^{2} $ is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/$ m^{2} $. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced. | ||
650 | 4 | |a Air–sea interaction | |
650 | 4 | |a Tropical cyclones | |
650 | 4 | |a Ocean modeling | |
650 | 4 | |a Air–sea fluxes | |
700 | 1 | |a Bourassa, Mark A. |4 aut | |
700 | 1 | |a Dukhovskoy, Dmitry S. |4 aut | |
700 | 1 | |a O’Brien, James J. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ocean dynamics |d Springer-Verlag, 2001 |g 56(2006), 5-6 vom: 20. Juni, Seite 594-606 |w (DE-627)335936091 |w (DE-600)2060148-7 |w (DE-576)096704470 |x 1616-7341 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2006 |g number:5-6 |g day:20 |g month:06 |g pages:594-606 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10236-006-0085-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-GGO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_183 | ||
912 | |a GBV_ILN_600 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_608 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
936 | b | k | |a 38.90$jOzeanologie$jOzeanographie |q VZ |0 106421921 |0 (DE-625)106421921 |
951 | |a AR | ||
952 | |d 56 |j 2006 |e 5-6 |b 20 |c 06 |h 594-606 |
author_variant |
s l m sl slm m a b ma mab d s d ds dsd j j o jj jjo |
---|---|
matchkey_str |
article:16167341:2006----::oeigtdeotepeoenepneot |
hierarchy_sort_str |
2006 |
bklnumber |
38.90$jOzeanologie$jOzeanographie |
publishDate |
2006 |
allfields |
10.1007/s10236-006-0085-y doi (DE-627)OLC2070856569 (DE-He213)s10236-006-0085-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn 38.90$jOzeanologie$jOzeanographie bkl Morey, Steven L. verfasserin aut Modeling studies of the upper ocean response to a tropical cyclone 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2006 Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/$ m^{2} $ is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/$ m^{2} $. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced. Air–sea interaction Tropical cyclones Ocean modeling Air–sea fluxes Bourassa, Mark A. aut Dukhovskoy, Dmitry S. aut O’Brien, James J. aut Enthalten in Ocean dynamics Springer-Verlag, 2001 56(2006), 5-6 vom: 20. Juni, Seite 594-606 (DE-627)335936091 (DE-600)2060148-7 (DE-576)096704470 1616-7341 nnns volume:56 year:2006 number:5-6 day:20 month:06 pages:594-606 https://doi.org/10.1007/s10236-006-0085-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-GGO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_183 GBV_ILN_600 GBV_ILN_602 GBV_ILN_608 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4305 38.90$jOzeanologie$jOzeanographie VZ 106421921 (DE-625)106421921 AR 56 2006 5-6 20 06 594-606 |
spelling |
10.1007/s10236-006-0085-y doi (DE-627)OLC2070856569 (DE-He213)s10236-006-0085-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn 38.90$jOzeanologie$jOzeanographie bkl Morey, Steven L. verfasserin aut Modeling studies of the upper ocean response to a tropical cyclone 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2006 Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/$ m^{2} $ is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/$ m^{2} $. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced. Air–sea interaction Tropical cyclones Ocean modeling Air–sea fluxes Bourassa, Mark A. aut Dukhovskoy, Dmitry S. aut O’Brien, James J. aut Enthalten in Ocean dynamics Springer-Verlag, 2001 56(2006), 5-6 vom: 20. Juni, Seite 594-606 (DE-627)335936091 (DE-600)2060148-7 (DE-576)096704470 1616-7341 nnns volume:56 year:2006 number:5-6 day:20 month:06 pages:594-606 https://doi.org/10.1007/s10236-006-0085-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-GGO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_183 GBV_ILN_600 GBV_ILN_602 GBV_ILN_608 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4305 38.90$jOzeanologie$jOzeanographie VZ 106421921 (DE-625)106421921 AR 56 2006 5-6 20 06 594-606 |
allfields_unstemmed |
10.1007/s10236-006-0085-y doi (DE-627)OLC2070856569 (DE-He213)s10236-006-0085-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn 38.90$jOzeanologie$jOzeanographie bkl Morey, Steven L. verfasserin aut Modeling studies of the upper ocean response to a tropical cyclone 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2006 Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/$ m^{2} $ is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/$ m^{2} $. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced. Air–sea interaction Tropical cyclones Ocean modeling Air–sea fluxes Bourassa, Mark A. aut Dukhovskoy, Dmitry S. aut O’Brien, James J. aut Enthalten in Ocean dynamics Springer-Verlag, 2001 56(2006), 5-6 vom: 20. Juni, Seite 594-606 (DE-627)335936091 (DE-600)2060148-7 (DE-576)096704470 1616-7341 nnns volume:56 year:2006 number:5-6 day:20 month:06 pages:594-606 https://doi.org/10.1007/s10236-006-0085-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-GGO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_183 GBV_ILN_600 GBV_ILN_602 GBV_ILN_608 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4305 38.90$jOzeanologie$jOzeanographie VZ 106421921 (DE-625)106421921 AR 56 2006 5-6 20 06 594-606 |
allfieldsGer |
10.1007/s10236-006-0085-y doi (DE-627)OLC2070856569 (DE-He213)s10236-006-0085-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn 38.90$jOzeanologie$jOzeanographie bkl Morey, Steven L. verfasserin aut Modeling studies of the upper ocean response to a tropical cyclone 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2006 Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/$ m^{2} $ is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/$ m^{2} $. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced. Air–sea interaction Tropical cyclones Ocean modeling Air–sea fluxes Bourassa, Mark A. aut Dukhovskoy, Dmitry S. aut O’Brien, James J. aut Enthalten in Ocean dynamics Springer-Verlag, 2001 56(2006), 5-6 vom: 20. Juni, Seite 594-606 (DE-627)335936091 (DE-600)2060148-7 (DE-576)096704470 1616-7341 nnns volume:56 year:2006 number:5-6 day:20 month:06 pages:594-606 https://doi.org/10.1007/s10236-006-0085-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-GGO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_183 GBV_ILN_600 GBV_ILN_602 GBV_ILN_608 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4305 38.90$jOzeanologie$jOzeanographie VZ 106421921 (DE-625)106421921 AR 56 2006 5-6 20 06 594-606 |
allfieldsSound |
10.1007/s10236-006-0085-y doi (DE-627)OLC2070856569 (DE-He213)s10236-006-0085-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn 38.90$jOzeanologie$jOzeanographie bkl Morey, Steven L. verfasserin aut Modeling studies of the upper ocean response to a tropical cyclone 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2006 Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/$ m^{2} $ is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/$ m^{2} $. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced. Air–sea interaction Tropical cyclones Ocean modeling Air–sea fluxes Bourassa, Mark A. aut Dukhovskoy, Dmitry S. aut O’Brien, James J. aut Enthalten in Ocean dynamics Springer-Verlag, 2001 56(2006), 5-6 vom: 20. Juni, Seite 594-606 (DE-627)335936091 (DE-600)2060148-7 (DE-576)096704470 1616-7341 nnns volume:56 year:2006 number:5-6 day:20 month:06 pages:594-606 https://doi.org/10.1007/s10236-006-0085-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-GGO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_183 GBV_ILN_600 GBV_ILN_602 GBV_ILN_608 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4305 38.90$jOzeanologie$jOzeanographie VZ 106421921 (DE-625)106421921 AR 56 2006 5-6 20 06 594-606 |
language |
English |
source |
Enthalten in Ocean dynamics 56(2006), 5-6 vom: 20. Juni, Seite 594-606 volume:56 year:2006 number:5-6 day:20 month:06 pages:594-606 |
sourceStr |
Enthalten in Ocean dynamics 56(2006), 5-6 vom: 20. Juni, Seite 594-606 volume:56 year:2006 number:5-6 day:20 month:06 pages:594-606 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Air–sea interaction Tropical cyclones Ocean modeling Air–sea fluxes |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Ocean dynamics |
authorswithroles_txt_mv |
Morey, Steven L. @@aut@@ Bourassa, Mark A. @@aut@@ Dukhovskoy, Dmitry S. @@aut@@ O’Brien, James J. @@aut@@ |
publishDateDaySort_date |
2006-06-20T00:00:00Z |
hierarchy_top_id |
335936091 |
dewey-sort |
3550 |
id |
OLC2070856569 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070856569</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180211.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10236-006-0085-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070856569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10236-006-0085-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.90$jOzeanologie$jOzeanographie</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morey, Steven L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling studies of the upper ocean response to a tropical cyclone</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/$ m^{2} $ is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/$ m^{2} $. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air–sea interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tropical cyclones</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air–sea fluxes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bourassa, Mark A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dukhovskoy, Dmitry S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O’Brien, James J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean dynamics</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">56(2006), 5-6 vom: 20. Juni, Seite 594-606</subfield><subfield code="w">(DE-627)335936091</subfield><subfield code="w">(DE-600)2060148-7</subfield><subfield code="w">(DE-576)096704470</subfield><subfield code="x">1616-7341</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:20</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:594-606</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10236-006-0085-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_600</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_608</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.90$jOzeanologie$jOzeanographie</subfield><subfield code="q">VZ</subfield><subfield code="0">106421921</subfield><subfield code="0">(DE-625)106421921</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2006</subfield><subfield code="e">5-6</subfield><subfield code="b">20</subfield><subfield code="c">06</subfield><subfield code="h">594-606</subfield></datafield></record></collection>
|
author |
Morey, Steven L. |
spellingShingle |
Morey, Steven L. ddc 550 ssgn 14 bkl 38.90$jOzeanologie$jOzeanographie misc Air–sea interaction misc Tropical cyclones misc Ocean modeling misc Air–sea fluxes Modeling studies of the upper ocean response to a tropical cyclone |
authorStr |
Morey, Steven L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)335936091 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1616-7341 |
topic_title |
550 VZ 14 ssgn 38.90$jOzeanologie$jOzeanographie bkl Modeling studies of the upper ocean response to a tropical cyclone Air–sea interaction Tropical cyclones Ocean modeling Air–sea fluxes |
topic |
ddc 550 ssgn 14 bkl 38.90$jOzeanologie$jOzeanographie misc Air–sea interaction misc Tropical cyclones misc Ocean modeling misc Air–sea fluxes |
topic_unstemmed |
ddc 550 ssgn 14 bkl 38.90$jOzeanologie$jOzeanographie misc Air–sea interaction misc Tropical cyclones misc Ocean modeling misc Air–sea fluxes |
topic_browse |
ddc 550 ssgn 14 bkl 38.90$jOzeanologie$jOzeanographie misc Air–sea interaction misc Tropical cyclones misc Ocean modeling misc Air–sea fluxes |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Ocean dynamics |
hierarchy_parent_id |
335936091 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Ocean dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)335936091 (DE-600)2060148-7 (DE-576)096704470 |
title |
Modeling studies of the upper ocean response to a tropical cyclone |
ctrlnum |
(DE-627)OLC2070856569 (DE-He213)s10236-006-0085-y-p |
title_full |
Modeling studies of the upper ocean response to a tropical cyclone |
author_sort |
Morey, Steven L. |
journal |
Ocean dynamics |
journalStr |
Ocean dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
594 |
author_browse |
Morey, Steven L. Bourassa, Mark A. Dukhovskoy, Dmitry S. O’Brien, James J. |
container_volume |
56 |
class |
550 VZ 14 ssgn 38.90$jOzeanologie$jOzeanographie bkl |
format_se |
Aufsätze |
author-letter |
Morey, Steven L. |
doi_str_mv |
10.1007/s10236-006-0085-y |
normlink |
106421921 |
normlink_prefix_str_mv |
106421921 (DE-625)106421921 |
dewey-full |
550 |
title_sort |
modeling studies of the upper ocean response to a tropical cyclone |
title_auth |
Modeling studies of the upper ocean response to a tropical cyclone |
abstract |
Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/$ m^{2} $ is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/$ m^{2} $. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced. © Springer-Verlag 2006 |
abstractGer |
Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/$ m^{2} $ is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/$ m^{2} $. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced. © Springer-Verlag 2006 |
abstract_unstemmed |
Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/$ m^{2} $ is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/$ m^{2} $. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced. © Springer-Verlag 2006 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-GGO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_183 GBV_ILN_600 GBV_ILN_602 GBV_ILN_608 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4305 |
container_issue |
5-6 |
title_short |
Modeling studies of the upper ocean response to a tropical cyclone |
url |
https://doi.org/10.1007/s10236-006-0085-y |
remote_bool |
false |
author2 |
Bourassa, Mark A. Dukhovskoy, Dmitry S. O’Brien, James J. |
author2Str |
Bourassa, Mark A. Dukhovskoy, Dmitry S. O’Brien, James J. |
ppnlink |
335936091 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10236-006-0085-y |
up_date |
2024-07-04T02:25:59.287Z |
_version_ |
1803613591871422464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070856569</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180211.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10236-006-0085-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070856569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10236-006-0085-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.90$jOzeanologie$jOzeanographie</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morey, Steven L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling studies of the upper ocean response to a tropical cyclone</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/$ m^{2} $ is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/$ m^{2} $. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air–sea interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tropical cyclones</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air–sea fluxes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bourassa, Mark A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dukhovskoy, Dmitry S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O’Brien, James J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean dynamics</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">56(2006), 5-6 vom: 20. Juni, Seite 594-606</subfield><subfield code="w">(DE-627)335936091</subfield><subfield code="w">(DE-600)2060148-7</subfield><subfield code="w">(DE-576)096704470</subfield><subfield code="x">1616-7341</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:20</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:594-606</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10236-006-0085-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_600</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_608</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.90$jOzeanologie$jOzeanographie</subfield><subfield code="q">VZ</subfield><subfield code="0">106421921</subfield><subfield code="0">(DE-625)106421921</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2006</subfield><subfield code="e">5-6</subfield><subfield code="b">20</subfield><subfield code="c">06</subfield><subfield code="h">594-606</subfield></datafield></record></collection>
|
score |
7.4028063 |