Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights
Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental re...
Ausführliche Beschreibung
Autor*in: |
Pébay, Philippe [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg (outside the USA) 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Computational statistics - Springer Berlin Heidelberg, 1992, 31(2016), 4 vom: 29. März, Seite 1305-1325 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2016 ; number:4 ; day:29 ; month:03 ; pages:1305-1325 |
Links: |
---|
DOI / URN: |
10.1007/s00180-015-0637-z |
---|
Katalog-ID: |
OLC2070885097 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070885097 | ||
003 | DE-627 | ||
005 | 20230323142617.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00180-015-0637-z |2 doi | |
035 | |a (DE-627)OLC2070885097 | ||
035 | |a (DE-He213)s00180-015-0637-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 004 |q VZ |
100 | 1 | |a Pébay, Philippe |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg (outside the USA) 2016 | ||
520 | |a Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application. | ||
650 | 4 | |a Descriptive statistics | |
650 | 4 | |a Statistical moments | |
650 | 4 | |a Parallel computing | |
650 | 4 | |a Large data analysis | |
700 | 1 | |a Terriberry, Timothy B. |4 aut | |
700 | 1 | |a Kolla, Hemanth |4 aut | |
700 | 1 | |a Bennett, Janine |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computational statistics |d Springer Berlin Heidelberg, 1992 |g 31(2016), 4 vom: 29. März, Seite 1305-1325 |w (DE-627)131054694 |w (DE-600)1104678-8 |w (DE-576)028053559 |x 0943-4062 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2016 |g number:4 |g day:29 |g month:03 |g pages:1305-1325 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00180-015-0637-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 31 |j 2016 |e 4 |b 29 |c 03 |h 1305-1325 |
author_variant |
p p pp t b t tb tbt h k hk j b jb |
---|---|
matchkey_str |
article:09434062:2016----::ueialsalsaalfruafraallnolncmuainfihrremliaitc |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00180-015-0637-z doi (DE-627)OLC2070885097 (DE-He213)s00180-015-0637-z-p DE-627 ger DE-627 rakwb eng 510 004 VZ Pébay, Philippe verfasserin aut Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg (outside the USA) 2016 Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application. Descriptive statistics Statistical moments Parallel computing Large data analysis Terriberry, Timothy B. aut Kolla, Hemanth aut Bennett, Janine aut Enthalten in Computational statistics Springer Berlin Heidelberg, 1992 31(2016), 4 vom: 29. März, Seite 1305-1325 (DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 0943-4062 nnns volume:31 year:2016 number:4 day:29 month:03 pages:1305-1325 https://doi.org/10.1007/s00180-015-0637-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 AR 31 2016 4 29 03 1305-1325 |
spelling |
10.1007/s00180-015-0637-z doi (DE-627)OLC2070885097 (DE-He213)s00180-015-0637-z-p DE-627 ger DE-627 rakwb eng 510 004 VZ Pébay, Philippe verfasserin aut Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg (outside the USA) 2016 Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application. Descriptive statistics Statistical moments Parallel computing Large data analysis Terriberry, Timothy B. aut Kolla, Hemanth aut Bennett, Janine aut Enthalten in Computational statistics Springer Berlin Heidelberg, 1992 31(2016), 4 vom: 29. März, Seite 1305-1325 (DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 0943-4062 nnns volume:31 year:2016 number:4 day:29 month:03 pages:1305-1325 https://doi.org/10.1007/s00180-015-0637-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 AR 31 2016 4 29 03 1305-1325 |
allfields_unstemmed |
10.1007/s00180-015-0637-z doi (DE-627)OLC2070885097 (DE-He213)s00180-015-0637-z-p DE-627 ger DE-627 rakwb eng 510 004 VZ Pébay, Philippe verfasserin aut Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg (outside the USA) 2016 Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application. Descriptive statistics Statistical moments Parallel computing Large data analysis Terriberry, Timothy B. aut Kolla, Hemanth aut Bennett, Janine aut Enthalten in Computational statistics Springer Berlin Heidelberg, 1992 31(2016), 4 vom: 29. März, Seite 1305-1325 (DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 0943-4062 nnns volume:31 year:2016 number:4 day:29 month:03 pages:1305-1325 https://doi.org/10.1007/s00180-015-0637-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 AR 31 2016 4 29 03 1305-1325 |
allfieldsGer |
10.1007/s00180-015-0637-z doi (DE-627)OLC2070885097 (DE-He213)s00180-015-0637-z-p DE-627 ger DE-627 rakwb eng 510 004 VZ Pébay, Philippe verfasserin aut Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg (outside the USA) 2016 Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application. Descriptive statistics Statistical moments Parallel computing Large data analysis Terriberry, Timothy B. aut Kolla, Hemanth aut Bennett, Janine aut Enthalten in Computational statistics Springer Berlin Heidelberg, 1992 31(2016), 4 vom: 29. März, Seite 1305-1325 (DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 0943-4062 nnns volume:31 year:2016 number:4 day:29 month:03 pages:1305-1325 https://doi.org/10.1007/s00180-015-0637-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 AR 31 2016 4 29 03 1305-1325 |
allfieldsSound |
10.1007/s00180-015-0637-z doi (DE-627)OLC2070885097 (DE-He213)s00180-015-0637-z-p DE-627 ger DE-627 rakwb eng 510 004 VZ Pébay, Philippe verfasserin aut Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg (outside the USA) 2016 Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application. Descriptive statistics Statistical moments Parallel computing Large data analysis Terriberry, Timothy B. aut Kolla, Hemanth aut Bennett, Janine aut Enthalten in Computational statistics Springer Berlin Heidelberg, 1992 31(2016), 4 vom: 29. März, Seite 1305-1325 (DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 0943-4062 nnns volume:31 year:2016 number:4 day:29 month:03 pages:1305-1325 https://doi.org/10.1007/s00180-015-0637-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 AR 31 2016 4 29 03 1305-1325 |
language |
English |
source |
Enthalten in Computational statistics 31(2016), 4 vom: 29. März, Seite 1305-1325 volume:31 year:2016 number:4 day:29 month:03 pages:1305-1325 |
sourceStr |
Enthalten in Computational statistics 31(2016), 4 vom: 29. März, Seite 1305-1325 volume:31 year:2016 number:4 day:29 month:03 pages:1305-1325 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Descriptive statistics Statistical moments Parallel computing Large data analysis |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Computational statistics |
authorswithroles_txt_mv |
Pébay, Philippe @@aut@@ Terriberry, Timothy B. @@aut@@ Kolla, Hemanth @@aut@@ Bennett, Janine @@aut@@ |
publishDateDaySort_date |
2016-03-29T00:00:00Z |
hierarchy_top_id |
131054694 |
dewey-sort |
3510 |
id |
OLC2070885097 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070885097</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323142617.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00180-015-0637-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070885097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00180-015-0637-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pébay, Philippe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg (outside the USA) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Descriptive statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical moments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large data analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terriberry, Timothy B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kolla, Hemanth</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bennett, Janine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational statistics</subfield><subfield code="d">Springer Berlin Heidelberg, 1992</subfield><subfield code="g">31(2016), 4 vom: 29. März, Seite 1305-1325</subfield><subfield code="w">(DE-627)131054694</subfield><subfield code="w">(DE-600)1104678-8</subfield><subfield code="w">(DE-576)028053559</subfield><subfield code="x">0943-4062</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:29</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1305-1325</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00180-015-0637-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">29</subfield><subfield code="c">03</subfield><subfield code="h">1305-1325</subfield></datafield></record></collection>
|
author |
Pébay, Philippe |
spellingShingle |
Pébay, Philippe ddc 510 misc Descriptive statistics misc Statistical moments misc Parallel computing misc Large data analysis Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights |
authorStr |
Pébay, Philippe |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131054694 |
format |
Article |
dewey-ones |
510 - Mathematics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0943-4062 |
topic_title |
510 004 VZ Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights Descriptive statistics Statistical moments Parallel computing Large data analysis |
topic |
ddc 510 misc Descriptive statistics misc Statistical moments misc Parallel computing misc Large data analysis |
topic_unstemmed |
ddc 510 misc Descriptive statistics misc Statistical moments misc Parallel computing misc Large data analysis |
topic_browse |
ddc 510 misc Descriptive statistics misc Statistical moments misc Parallel computing misc Large data analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Computational statistics |
hierarchy_parent_id |
131054694 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computational statistics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 |
title |
Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights |
ctrlnum |
(DE-627)OLC2070885097 (DE-He213)s00180-015-0637-z-p |
title_full |
Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights |
author_sort |
Pébay, Philippe |
journal |
Computational statistics |
journalStr |
Computational statistics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1305 |
author_browse |
Pébay, Philippe Terriberry, Timothy B. Kolla, Hemanth Bennett, Janine |
container_volume |
31 |
class |
510 004 VZ |
format_se |
Aufsätze |
author-letter |
Pébay, Philippe |
doi_str_mv |
10.1007/s00180-015-0637-z |
dewey-full |
510 004 |
title_sort |
numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights |
title_auth |
Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights |
abstract |
Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application. © Springer-Verlag Berlin Heidelberg (outside the USA) 2016 |
abstractGer |
Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application. © Springer-Verlag Berlin Heidelberg (outside the USA) 2016 |
abstract_unstemmed |
Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application. © Springer-Verlag Berlin Heidelberg (outside the USA) 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 |
container_issue |
4 |
title_short |
Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights |
url |
https://doi.org/10.1007/s00180-015-0637-z |
remote_bool |
false |
author2 |
Terriberry, Timothy B. Kolla, Hemanth Bennett, Janine |
author2Str |
Terriberry, Timothy B. Kolla, Hemanth Bennett, Janine |
ppnlink |
131054694 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00180-015-0637-z |
up_date |
2024-07-04T02:30:34.605Z |
_version_ |
1803613880563269632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070885097</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323142617.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00180-015-0637-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070885097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00180-015-0637-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pébay, Philippe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg (outside the USA) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Descriptive statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical moments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large data analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terriberry, Timothy B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kolla, Hemanth</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bennett, Janine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational statistics</subfield><subfield code="d">Springer Berlin Heidelberg, 1992</subfield><subfield code="g">31(2016), 4 vom: 29. März, Seite 1305-1325</subfield><subfield code="w">(DE-627)131054694</subfield><subfield code="w">(DE-600)1104678-8</subfield><subfield code="w">(DE-576)028053559</subfield><subfield code="x">0943-4062</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:29</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1305-1325</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00180-015-0637-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">29</subfield><subfield code="c">03</subfield><subfield code="h">1305-1325</subfield></datafield></record></collection>
|
score |
7.403097 |