Benefits of functional PCA in the analysis of single-trial auditory evoked potentials
Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception charac...
Ausführliche Beschreibung
Autor*in: |
Koláček, Jan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Computational statistics - Springer Berlin Heidelberg, 1992, 34(2018), 2 vom: 14. Mai, Seite 617-629 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2018 ; number:2 ; day:14 ; month:05 ; pages:617-629 |
Links: |
---|
DOI / URN: |
10.1007/s00180-018-0819-6 |
---|
Katalog-ID: |
OLC2070887030 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2070887030 | ||
003 | DE-627 | ||
005 | 20230323142638.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00180-018-0819-6 |2 doi | |
035 | |a (DE-627)OLC2070887030 | ||
035 | |a (DE-He213)s00180-018-0819-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 004 |q VZ |
100 | 1 | |a Koláček, Jan |e verfasserin |0 (orcid)0000-0002-0834-0072 |4 aut | |
245 | 1 | 0 | |a Benefits of functional PCA in the analysis of single-trial auditory evoked potentials |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2018 | ||
520 | |a Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response. | ||
650 | 4 | |a Functional data | |
650 | 4 | |a Principal component analysis | |
650 | 4 | |a Single-trial auditory response | |
700 | 1 | |a Pokora, Ondřej |4 aut | |
700 | 1 | |a Kuruczová, Daniela |4 aut | |
700 | 1 | |a Chiu, Tzai-Wen |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computational statistics |d Springer Berlin Heidelberg, 1992 |g 34(2018), 2 vom: 14. Mai, Seite 617-629 |w (DE-627)131054694 |w (DE-600)1104678-8 |w (DE-576)028053559 |x 0943-4062 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2018 |g number:2 |g day:14 |g month:05 |g pages:617-629 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00180-018-0819-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
951 | |a AR | ||
952 | |d 34 |j 2018 |e 2 |b 14 |c 05 |h 617-629 |
author_variant |
j k jk o p op d k dk t w c twc |
---|---|
matchkey_str |
article:09434062:2018----::eeisfucinlcitenlssfigeraadt |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00180-018-0819-6 doi (DE-627)OLC2070887030 (DE-He213)s00180-018-0819-6-p DE-627 ger DE-627 rakwb eng 510 004 VZ Koláček, Jan verfasserin (orcid)0000-0002-0834-0072 aut Benefits of functional PCA in the analysis of single-trial auditory evoked potentials 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response. Functional data Principal component analysis Single-trial auditory response Pokora, Ondřej aut Kuruczová, Daniela aut Chiu, Tzai-Wen aut Enthalten in Computational statistics Springer Berlin Heidelberg, 1992 34(2018), 2 vom: 14. Mai, Seite 617-629 (DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 0943-4062 nnns volume:34 year:2018 number:2 day:14 month:05 pages:617-629 https://doi.org/10.1007/s00180-018-0819-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 AR 34 2018 2 14 05 617-629 |
spelling |
10.1007/s00180-018-0819-6 doi (DE-627)OLC2070887030 (DE-He213)s00180-018-0819-6-p DE-627 ger DE-627 rakwb eng 510 004 VZ Koláček, Jan verfasserin (orcid)0000-0002-0834-0072 aut Benefits of functional PCA in the analysis of single-trial auditory evoked potentials 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response. Functional data Principal component analysis Single-trial auditory response Pokora, Ondřej aut Kuruczová, Daniela aut Chiu, Tzai-Wen aut Enthalten in Computational statistics Springer Berlin Heidelberg, 1992 34(2018), 2 vom: 14. Mai, Seite 617-629 (DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 0943-4062 nnns volume:34 year:2018 number:2 day:14 month:05 pages:617-629 https://doi.org/10.1007/s00180-018-0819-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 AR 34 2018 2 14 05 617-629 |
allfields_unstemmed |
10.1007/s00180-018-0819-6 doi (DE-627)OLC2070887030 (DE-He213)s00180-018-0819-6-p DE-627 ger DE-627 rakwb eng 510 004 VZ Koláček, Jan verfasserin (orcid)0000-0002-0834-0072 aut Benefits of functional PCA in the analysis of single-trial auditory evoked potentials 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response. Functional data Principal component analysis Single-trial auditory response Pokora, Ondřej aut Kuruczová, Daniela aut Chiu, Tzai-Wen aut Enthalten in Computational statistics Springer Berlin Heidelberg, 1992 34(2018), 2 vom: 14. Mai, Seite 617-629 (DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 0943-4062 nnns volume:34 year:2018 number:2 day:14 month:05 pages:617-629 https://doi.org/10.1007/s00180-018-0819-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 AR 34 2018 2 14 05 617-629 |
allfieldsGer |
10.1007/s00180-018-0819-6 doi (DE-627)OLC2070887030 (DE-He213)s00180-018-0819-6-p DE-627 ger DE-627 rakwb eng 510 004 VZ Koláček, Jan verfasserin (orcid)0000-0002-0834-0072 aut Benefits of functional PCA in the analysis of single-trial auditory evoked potentials 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response. Functional data Principal component analysis Single-trial auditory response Pokora, Ondřej aut Kuruczová, Daniela aut Chiu, Tzai-Wen aut Enthalten in Computational statistics Springer Berlin Heidelberg, 1992 34(2018), 2 vom: 14. Mai, Seite 617-629 (DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 0943-4062 nnns volume:34 year:2018 number:2 day:14 month:05 pages:617-629 https://doi.org/10.1007/s00180-018-0819-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 AR 34 2018 2 14 05 617-629 |
allfieldsSound |
10.1007/s00180-018-0819-6 doi (DE-627)OLC2070887030 (DE-He213)s00180-018-0819-6-p DE-627 ger DE-627 rakwb eng 510 004 VZ Koláček, Jan verfasserin (orcid)0000-0002-0834-0072 aut Benefits of functional PCA in the analysis of single-trial auditory evoked potentials 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response. Functional data Principal component analysis Single-trial auditory response Pokora, Ondřej aut Kuruczová, Daniela aut Chiu, Tzai-Wen aut Enthalten in Computational statistics Springer Berlin Heidelberg, 1992 34(2018), 2 vom: 14. Mai, Seite 617-629 (DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 0943-4062 nnns volume:34 year:2018 number:2 day:14 month:05 pages:617-629 https://doi.org/10.1007/s00180-018-0819-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 AR 34 2018 2 14 05 617-629 |
language |
English |
source |
Enthalten in Computational statistics 34(2018), 2 vom: 14. Mai, Seite 617-629 volume:34 year:2018 number:2 day:14 month:05 pages:617-629 |
sourceStr |
Enthalten in Computational statistics 34(2018), 2 vom: 14. Mai, Seite 617-629 volume:34 year:2018 number:2 day:14 month:05 pages:617-629 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Functional data Principal component analysis Single-trial auditory response |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Computational statistics |
authorswithroles_txt_mv |
Koláček, Jan @@aut@@ Pokora, Ondřej @@aut@@ Kuruczová, Daniela @@aut@@ Chiu, Tzai-Wen @@aut@@ |
publishDateDaySort_date |
2018-05-14T00:00:00Z |
hierarchy_top_id |
131054694 |
dewey-sort |
3510 |
id |
OLC2070887030 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070887030</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323142638.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00180-018-0819-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070887030</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00180-018-0819-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koláček, Jan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0834-0072</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Benefits of functional PCA in the analysis of single-trial auditory evoked potentials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-trial auditory response</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pokora, Ondřej</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuruczová, Daniela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chiu, Tzai-Wen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational statistics</subfield><subfield code="d">Springer Berlin Heidelberg, 1992</subfield><subfield code="g">34(2018), 2 vom: 14. Mai, Seite 617-629</subfield><subfield code="w">(DE-627)131054694</subfield><subfield code="w">(DE-600)1104678-8</subfield><subfield code="w">(DE-576)028053559</subfield><subfield code="x">0943-4062</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:14</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:617-629</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00180-018-0819-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">14</subfield><subfield code="c">05</subfield><subfield code="h">617-629</subfield></datafield></record></collection>
|
author |
Koláček, Jan |
spellingShingle |
Koláček, Jan ddc 510 misc Functional data misc Principal component analysis misc Single-trial auditory response Benefits of functional PCA in the analysis of single-trial auditory evoked potentials |
authorStr |
Koláček, Jan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131054694 |
format |
Article |
dewey-ones |
510 - Mathematics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0943-4062 |
topic_title |
510 004 VZ Benefits of functional PCA in the analysis of single-trial auditory evoked potentials Functional data Principal component analysis Single-trial auditory response |
topic |
ddc 510 misc Functional data misc Principal component analysis misc Single-trial auditory response |
topic_unstemmed |
ddc 510 misc Functional data misc Principal component analysis misc Single-trial auditory response |
topic_browse |
ddc 510 misc Functional data misc Principal component analysis misc Single-trial auditory response |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Computational statistics |
hierarchy_parent_id |
131054694 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computational statistics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131054694 (DE-600)1104678-8 (DE-576)028053559 |
title |
Benefits of functional PCA in the analysis of single-trial auditory evoked potentials |
ctrlnum |
(DE-627)OLC2070887030 (DE-He213)s00180-018-0819-6-p |
title_full |
Benefits of functional PCA in the analysis of single-trial auditory evoked potentials |
author_sort |
Koláček, Jan |
journal |
Computational statistics |
journalStr |
Computational statistics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
617 |
author_browse |
Koláček, Jan Pokora, Ondřej Kuruczová, Daniela Chiu, Tzai-Wen |
container_volume |
34 |
class |
510 004 VZ |
format_se |
Aufsätze |
author-letter |
Koláček, Jan |
doi_str_mv |
10.1007/s00180-018-0819-6 |
normlink |
(ORCID)0000-0002-0834-0072 |
normlink_prefix_str_mv |
(orcid)0000-0002-0834-0072 |
dewey-full |
510 004 |
title_sort |
benefits of functional pca in the analysis of single-trial auditory evoked potentials |
title_auth |
Benefits of functional PCA in the analysis of single-trial auditory evoked potentials |
abstract |
Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstractGer |
Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 |
container_issue |
2 |
title_short |
Benefits of functional PCA in the analysis of single-trial auditory evoked potentials |
url |
https://doi.org/10.1007/s00180-018-0819-6 |
remote_bool |
false |
author2 |
Pokora, Ondřej Kuruczová, Daniela Chiu, Tzai-Wen |
author2Str |
Pokora, Ondřej Kuruczová, Daniela Chiu, Tzai-Wen |
ppnlink |
131054694 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00180-018-0819-6 |
up_date |
2024-07-04T02:30:50.130Z |
_version_ |
1803613896841363456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2070887030</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323142638.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00180-018-0819-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2070887030</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00180-018-0819-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koláček, Jan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0834-0072</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Benefits of functional PCA in the analysis of single-trial auditory evoked potentials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-trial auditory response</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pokora, Ondřej</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuruczová, Daniela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chiu, Tzai-Wen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational statistics</subfield><subfield code="d">Springer Berlin Heidelberg, 1992</subfield><subfield code="g">34(2018), 2 vom: 14. Mai, Seite 617-629</subfield><subfield code="w">(DE-627)131054694</subfield><subfield code="w">(DE-600)1104678-8</subfield><subfield code="w">(DE-576)028053559</subfield><subfield code="x">0943-4062</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:14</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:617-629</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00180-018-0819-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">14</subfield><subfield code="c">05</subfield><subfield code="h">617-629</subfield></datafield></record></collection>
|
score |
7.402647 |