Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations
Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form...
Ausführliche Beschreibung
Autor*in: |
Yang, Tian-Zhi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Archive of applied mechanics - Springer-Verlag, 1991, 83(2012), 6 vom: 27. Dez., Seite 899-906 |
---|---|
Übergeordnetes Werk: |
volume:83 ; year:2012 ; number:6 ; day:27 ; month:12 ; pages:899-906 |
Links: |
---|
DOI / URN: |
10.1007/s00419-012-0725-2 |
---|
Katalog-ID: |
OLC2071055365 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071055365 | ||
003 | DE-627 | ||
005 | 20230403013554.0 | ||
007 | tu | ||
008 | 200820s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00419-012-0725-2 |2 doi | |
035 | |a (DE-627)OLC2071055365 | ||
035 | |a (DE-He213)s00419-012-0725-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
100 | 1 | |a Yang, Tian-Zhi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2012 | ||
520 | |a Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form solution for the supercritical configuration in terms of the axial speed is obtained. Some typical boundary conditions, such as fixed-fixed, fixed-pinned and pinned-pinned, are discussed. More importantly, based on the exact solution, we found a new anti-symmetric configuration for the fixed-fixed axially moving beams. The traveling beam may vibrate around the new anti-symmetric configuration at sufficiently high traveling speeds. A good accuracy of the solution is confirmed by a comparison with the data available in the literature, and with our own numerical results. | ||
650 | 4 | |a Exact solution | |
650 | 4 | |a Supercritical axially moving beam | |
650 | 4 | |a Boundary condition | |
650 | 4 | |a Anti-symmetric configuration | |
700 | 1 | |a Yang, Xiao-Dong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Archive of applied mechanics |d Springer-Verlag, 1991 |g 83(2012), 6 vom: 27. Dez., Seite 899-906 |w (DE-627)130929700 |w (DE-600)1056088-9 |w (DE-576)02508755X |x 0939-1533 |7 nnns |
773 | 1 | 8 | |g volume:83 |g year:2012 |g number:6 |g day:27 |g month:12 |g pages:899-906 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00419-012-0725-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 83 |j 2012 |e 6 |b 27 |c 12 |h 899-906 |
author_variant |
t z y tzy x d y xdy |
---|---|
matchkey_str |
article:09391533:2012----::xcsltoosprrtclxalmvnbasymtiadni |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s00419-012-0725-2 doi (DE-627)OLC2071055365 (DE-He213)s00419-012-0725-2-p DE-627 ger DE-627 rakwb eng 690 VZ Yang, Tian-Zhi verfasserin aut Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2012 Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form solution for the supercritical configuration in terms of the axial speed is obtained. Some typical boundary conditions, such as fixed-fixed, fixed-pinned and pinned-pinned, are discussed. More importantly, based on the exact solution, we found a new anti-symmetric configuration for the fixed-fixed axially moving beams. The traveling beam may vibrate around the new anti-symmetric configuration at sufficiently high traveling speeds. A good accuracy of the solution is confirmed by a comparison with the data available in the literature, and with our own numerical results. Exact solution Supercritical axially moving beam Boundary condition Anti-symmetric configuration Yang, Xiao-Dong aut Enthalten in Archive of applied mechanics Springer-Verlag, 1991 83(2012), 6 vom: 27. Dez., Seite 899-906 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:83 year:2012 number:6 day:27 month:12 pages:899-906 https://doi.org/10.1007/s00419-012-0725-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2057 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 AR 83 2012 6 27 12 899-906 |
spelling |
10.1007/s00419-012-0725-2 doi (DE-627)OLC2071055365 (DE-He213)s00419-012-0725-2-p DE-627 ger DE-627 rakwb eng 690 VZ Yang, Tian-Zhi verfasserin aut Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2012 Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form solution for the supercritical configuration in terms of the axial speed is obtained. Some typical boundary conditions, such as fixed-fixed, fixed-pinned and pinned-pinned, are discussed. More importantly, based on the exact solution, we found a new anti-symmetric configuration for the fixed-fixed axially moving beams. The traveling beam may vibrate around the new anti-symmetric configuration at sufficiently high traveling speeds. A good accuracy of the solution is confirmed by a comparison with the data available in the literature, and with our own numerical results. Exact solution Supercritical axially moving beam Boundary condition Anti-symmetric configuration Yang, Xiao-Dong aut Enthalten in Archive of applied mechanics Springer-Verlag, 1991 83(2012), 6 vom: 27. Dez., Seite 899-906 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:83 year:2012 number:6 day:27 month:12 pages:899-906 https://doi.org/10.1007/s00419-012-0725-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2057 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 AR 83 2012 6 27 12 899-906 |
allfields_unstemmed |
10.1007/s00419-012-0725-2 doi (DE-627)OLC2071055365 (DE-He213)s00419-012-0725-2-p DE-627 ger DE-627 rakwb eng 690 VZ Yang, Tian-Zhi verfasserin aut Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2012 Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form solution for the supercritical configuration in terms of the axial speed is obtained. Some typical boundary conditions, such as fixed-fixed, fixed-pinned and pinned-pinned, are discussed. More importantly, based on the exact solution, we found a new anti-symmetric configuration for the fixed-fixed axially moving beams. The traveling beam may vibrate around the new anti-symmetric configuration at sufficiently high traveling speeds. A good accuracy of the solution is confirmed by a comparison with the data available in the literature, and with our own numerical results. Exact solution Supercritical axially moving beam Boundary condition Anti-symmetric configuration Yang, Xiao-Dong aut Enthalten in Archive of applied mechanics Springer-Verlag, 1991 83(2012), 6 vom: 27. Dez., Seite 899-906 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:83 year:2012 number:6 day:27 month:12 pages:899-906 https://doi.org/10.1007/s00419-012-0725-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2057 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 AR 83 2012 6 27 12 899-906 |
allfieldsGer |
10.1007/s00419-012-0725-2 doi (DE-627)OLC2071055365 (DE-He213)s00419-012-0725-2-p DE-627 ger DE-627 rakwb eng 690 VZ Yang, Tian-Zhi verfasserin aut Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2012 Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form solution for the supercritical configuration in terms of the axial speed is obtained. Some typical boundary conditions, such as fixed-fixed, fixed-pinned and pinned-pinned, are discussed. More importantly, based on the exact solution, we found a new anti-symmetric configuration for the fixed-fixed axially moving beams. The traveling beam may vibrate around the new anti-symmetric configuration at sufficiently high traveling speeds. A good accuracy of the solution is confirmed by a comparison with the data available in the literature, and with our own numerical results. Exact solution Supercritical axially moving beam Boundary condition Anti-symmetric configuration Yang, Xiao-Dong aut Enthalten in Archive of applied mechanics Springer-Verlag, 1991 83(2012), 6 vom: 27. Dez., Seite 899-906 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:83 year:2012 number:6 day:27 month:12 pages:899-906 https://doi.org/10.1007/s00419-012-0725-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2057 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 AR 83 2012 6 27 12 899-906 |
allfieldsSound |
10.1007/s00419-012-0725-2 doi (DE-627)OLC2071055365 (DE-He213)s00419-012-0725-2-p DE-627 ger DE-627 rakwb eng 690 VZ Yang, Tian-Zhi verfasserin aut Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2012 Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form solution for the supercritical configuration in terms of the axial speed is obtained. Some typical boundary conditions, such as fixed-fixed, fixed-pinned and pinned-pinned, are discussed. More importantly, based on the exact solution, we found a new anti-symmetric configuration for the fixed-fixed axially moving beams. The traveling beam may vibrate around the new anti-symmetric configuration at sufficiently high traveling speeds. A good accuracy of the solution is confirmed by a comparison with the data available in the literature, and with our own numerical results. Exact solution Supercritical axially moving beam Boundary condition Anti-symmetric configuration Yang, Xiao-Dong aut Enthalten in Archive of applied mechanics Springer-Verlag, 1991 83(2012), 6 vom: 27. Dez., Seite 899-906 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:83 year:2012 number:6 day:27 month:12 pages:899-906 https://doi.org/10.1007/s00419-012-0725-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2057 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 AR 83 2012 6 27 12 899-906 |
language |
English |
source |
Enthalten in Archive of applied mechanics 83(2012), 6 vom: 27. Dez., Seite 899-906 volume:83 year:2012 number:6 day:27 month:12 pages:899-906 |
sourceStr |
Enthalten in Archive of applied mechanics 83(2012), 6 vom: 27. Dez., Seite 899-906 volume:83 year:2012 number:6 day:27 month:12 pages:899-906 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Exact solution Supercritical axially moving beam Boundary condition Anti-symmetric configuration |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Archive of applied mechanics |
authorswithroles_txt_mv |
Yang, Tian-Zhi @@aut@@ Yang, Xiao-Dong @@aut@@ |
publishDateDaySort_date |
2012-12-27T00:00:00Z |
hierarchy_top_id |
130929700 |
dewey-sort |
3690 |
id |
OLC2071055365 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071055365</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403013554.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00419-012-0725-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071055365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00419-012-0725-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Tian-Zhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form solution for the supercritical configuration in terms of the axial speed is obtained. Some typical boundary conditions, such as fixed-fixed, fixed-pinned and pinned-pinned, are discussed. More importantly, based on the exact solution, we found a new anti-symmetric configuration for the fixed-fixed axially moving beams. The traveling beam may vibrate around the new anti-symmetric configuration at sufficiently high traveling speeds. A good accuracy of the solution is confirmed by a comparison with the data available in the literature, and with our own numerical results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supercritical axially moving beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-symmetric configuration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xiao-Dong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive of applied mechanics</subfield><subfield code="d">Springer-Verlag, 1991</subfield><subfield code="g">83(2012), 6 vom: 27. Dez., Seite 899-906</subfield><subfield code="w">(DE-627)130929700</subfield><subfield code="w">(DE-600)1056088-9</subfield><subfield code="w">(DE-576)02508755X</subfield><subfield code="x">0939-1533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:83</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:6</subfield><subfield code="g">day:27</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:899-906</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00419-012-0725-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">83</subfield><subfield code="j">2012</subfield><subfield code="e">6</subfield><subfield code="b">27</subfield><subfield code="c">12</subfield><subfield code="h">899-906</subfield></datafield></record></collection>
|
author |
Yang, Tian-Zhi |
spellingShingle |
Yang, Tian-Zhi ddc 690 misc Exact solution misc Supercritical axially moving beam misc Boundary condition misc Anti-symmetric configuration Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations |
authorStr |
Yang, Tian-Zhi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130929700 |
format |
Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0939-1533 |
topic_title |
690 VZ Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations Exact solution Supercritical axially moving beam Boundary condition Anti-symmetric configuration |
topic |
ddc 690 misc Exact solution misc Supercritical axially moving beam misc Boundary condition misc Anti-symmetric configuration |
topic_unstemmed |
ddc 690 misc Exact solution misc Supercritical axially moving beam misc Boundary condition misc Anti-symmetric configuration |
topic_browse |
ddc 690 misc Exact solution misc Supercritical axially moving beam misc Boundary condition misc Anti-symmetric configuration |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Archive of applied mechanics |
hierarchy_parent_id |
130929700 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Archive of applied mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X |
title |
Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations |
ctrlnum |
(DE-627)OLC2071055365 (DE-He213)s00419-012-0725-2-p |
title_full |
Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations |
author_sort |
Yang, Tian-Zhi |
journal |
Archive of applied mechanics |
journalStr |
Archive of applied mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
899 |
author_browse |
Yang, Tian-Zhi Yang, Xiao-Dong |
container_volume |
83 |
class |
690 VZ |
format_se |
Aufsätze |
author-letter |
Yang, Tian-Zhi |
doi_str_mv |
10.1007/s00419-012-0725-2 |
dewey-full |
690 |
title_sort |
exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations |
title_auth |
Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations |
abstract |
Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form solution for the supercritical configuration in terms of the axial speed is obtained. Some typical boundary conditions, such as fixed-fixed, fixed-pinned and pinned-pinned, are discussed. More importantly, based on the exact solution, we found a new anti-symmetric configuration for the fixed-fixed axially moving beams. The traveling beam may vibrate around the new anti-symmetric configuration at sufficiently high traveling speeds. A good accuracy of the solution is confirmed by a comparison with the data available in the literature, and with our own numerical results. © Springer-Verlag Berlin Heidelberg 2012 |
abstractGer |
Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form solution for the supercritical configuration in terms of the axial speed is obtained. Some typical boundary conditions, such as fixed-fixed, fixed-pinned and pinned-pinned, are discussed. More importantly, based on the exact solution, we found a new anti-symmetric configuration for the fixed-fixed axially moving beams. The traveling beam may vibrate around the new anti-symmetric configuration at sufficiently high traveling speeds. A good accuracy of the solution is confirmed by a comparison with the data available in the literature, and with our own numerical results. © Springer-Verlag Berlin Heidelberg 2012 |
abstract_unstemmed |
Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form solution for the supercritical configuration in terms of the axial speed is obtained. Some typical boundary conditions, such as fixed-fixed, fixed-pinned and pinned-pinned, are discussed. More importantly, based on the exact solution, we found a new anti-symmetric configuration for the fixed-fixed axially moving beams. The traveling beam may vibrate around the new anti-symmetric configuration at sufficiently high traveling speeds. A good accuracy of the solution is confirmed by a comparison with the data available in the literature, and with our own numerical results. © Springer-Verlag Berlin Heidelberg 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2057 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations |
url |
https://doi.org/10.1007/s00419-012-0725-2 |
remote_bool |
false |
author2 |
Yang, Xiao-Dong |
author2Str |
Yang, Xiao-Dong |
ppnlink |
130929700 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00419-012-0725-2 |
up_date |
2024-07-04T02:50:21.571Z |
_version_ |
1803615125196767232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071055365</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403013554.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00419-012-0725-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071055365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00419-012-0725-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Tian-Zhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present an exact solution for supercritical configurations of axially moving beams with arbitrary boundary conditions. We take into account the geometric nonlinearity of the traveling beams in supercritical regime, and the nonlinear buckling problem is analytically solved. A closed-form solution for the supercritical configuration in terms of the axial speed is obtained. Some typical boundary conditions, such as fixed-fixed, fixed-pinned and pinned-pinned, are discussed. More importantly, based on the exact solution, we found a new anti-symmetric configuration for the fixed-fixed axially moving beams. The traveling beam may vibrate around the new anti-symmetric configuration at sufficiently high traveling speeds. A good accuracy of the solution is confirmed by a comparison with the data available in the literature, and with our own numerical results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supercritical axially moving beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-symmetric configuration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xiao-Dong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive of applied mechanics</subfield><subfield code="d">Springer-Verlag, 1991</subfield><subfield code="g">83(2012), 6 vom: 27. Dez., Seite 899-906</subfield><subfield code="w">(DE-627)130929700</subfield><subfield code="w">(DE-600)1056088-9</subfield><subfield code="w">(DE-576)02508755X</subfield><subfield code="x">0939-1533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:83</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:6</subfield><subfield code="g">day:27</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:899-906</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00419-012-0725-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">83</subfield><subfield code="j">2012</subfield><subfield code="e">6</subfield><subfield code="b">27</subfield><subfield code="c">12</subfield><subfield code="h">899-906</subfield></datafield></record></collection>
|
score |
7.400923 |