The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts
Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Lapla...
Ausführliche Beschreibung
Autor*in: |
Rogowski, Bogdan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Archive of applied mechanics - Springer Berlin Heidelberg, 1991, 85(2014), 1 vom: 23. Aug., Seite 29-50 |
---|---|
Übergeordnetes Werk: |
volume:85 ; year:2014 ; number:1 ; day:23 ; month:08 ; pages:29-50 |
Links: |
---|
DOI / URN: |
10.1007/s00419-014-0898-y |
---|
Katalog-ID: |
OLC2071057171 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071057171 | ||
003 | DE-627 | ||
005 | 20230403013610.0 | ||
007 | tu | ||
008 | 200820s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00419-014-0898-y |2 doi | |
035 | |a (DE-627)OLC2071057171 | ||
035 | |a (DE-He213)s00419-014-0898-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
100 | 1 | |a Rogowski, Bogdan |e verfasserin |4 aut | |
245 | 1 | 0 | |a The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2014 | ||
520 | |a Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Laplace transform techniques are used to reduce the problem to the solution of one Fredholm integral equation in Laplace domain and second equation in real domain. The Laplace inversion yields the result in the time domain. The equation in real domain is solved exactly. The semipermeable crack-face magneto-electric boundary conditions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric and magnetic potentials and the energy release rate are determined. The electric displacement and magnetic induction of crack interior are discussed. Strong coupling between stress and electric and magnetic field near crack tips has been found. Numerical results are presented, and some conclusions are drawn. | ||
650 | 4 | |a MEEMs half-space | |
650 | 4 | |a Dielectric crack | |
650 | 4 | |a Semipermeable condition | |
650 | 4 | |a Fourier and Laplace transforms | |
650 | 4 | |a Transient problem | |
650 | 4 | |a Field intensity factor | |
650 | 4 | |a Energy release rate | |
650 | 4 | |a Exact solution | |
773 | 0 | 8 | |i Enthalten in |t Archive of applied mechanics |d Springer Berlin Heidelberg, 1991 |g 85(2014), 1 vom: 23. Aug., Seite 29-50 |w (DE-627)130929700 |w (DE-600)1056088-9 |w (DE-576)02508755X |x 0939-1533 |7 nnns |
773 | 1 | 8 | |g volume:85 |g year:2014 |g number:1 |g day:23 |g month:08 |g pages:29-50 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00419-014-0898-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 85 |j 2014 |e 1 |b 23 |c 08 |h 29-50 |
author_variant |
b r br |
---|---|
matchkey_str |
article:09391533:2014----::htasetnlssfcnutncaknanteetolsihlsaeneatpaeehncln |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s00419-014-0898-y doi (DE-627)OLC2071057171 (DE-He213)s00419-014-0898-y-p DE-627 ger DE-627 rakwb eng 690 VZ Rogowski, Bogdan verfasserin aut The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Laplace transform techniques are used to reduce the problem to the solution of one Fredholm integral equation in Laplace domain and second equation in real domain. The Laplace inversion yields the result in the time domain. The equation in real domain is solved exactly. The semipermeable crack-face magneto-electric boundary conditions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric and magnetic potentials and the energy release rate are determined. The electric displacement and magnetic induction of crack interior are discussed. Strong coupling between stress and electric and magnetic field near crack tips has been found. Numerical results are presented, and some conclusions are drawn. MEEMs half-space Dielectric crack Semipermeable condition Fourier and Laplace transforms Transient problem Field intensity factor Energy release rate Exact solution Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 85(2014), 1 vom: 23. Aug., Seite 29-50 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:85 year:2014 number:1 day:23 month:08 pages:29-50 https://doi.org/10.1007/s00419-014-0898-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 AR 85 2014 1 23 08 29-50 |
spelling |
10.1007/s00419-014-0898-y doi (DE-627)OLC2071057171 (DE-He213)s00419-014-0898-y-p DE-627 ger DE-627 rakwb eng 690 VZ Rogowski, Bogdan verfasserin aut The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Laplace transform techniques are used to reduce the problem to the solution of one Fredholm integral equation in Laplace domain and second equation in real domain. The Laplace inversion yields the result in the time domain. The equation in real domain is solved exactly. The semipermeable crack-face magneto-electric boundary conditions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric and magnetic potentials and the energy release rate are determined. The electric displacement and magnetic induction of crack interior are discussed. Strong coupling between stress and electric and magnetic field near crack tips has been found. Numerical results are presented, and some conclusions are drawn. MEEMs half-space Dielectric crack Semipermeable condition Fourier and Laplace transforms Transient problem Field intensity factor Energy release rate Exact solution Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 85(2014), 1 vom: 23. Aug., Seite 29-50 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:85 year:2014 number:1 day:23 month:08 pages:29-50 https://doi.org/10.1007/s00419-014-0898-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 AR 85 2014 1 23 08 29-50 |
allfields_unstemmed |
10.1007/s00419-014-0898-y doi (DE-627)OLC2071057171 (DE-He213)s00419-014-0898-y-p DE-627 ger DE-627 rakwb eng 690 VZ Rogowski, Bogdan verfasserin aut The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Laplace transform techniques are used to reduce the problem to the solution of one Fredholm integral equation in Laplace domain and second equation in real domain. The Laplace inversion yields the result in the time domain. The equation in real domain is solved exactly. The semipermeable crack-face magneto-electric boundary conditions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric and magnetic potentials and the energy release rate are determined. The electric displacement and magnetic induction of crack interior are discussed. Strong coupling between stress and electric and magnetic field near crack tips has been found. Numerical results are presented, and some conclusions are drawn. MEEMs half-space Dielectric crack Semipermeable condition Fourier and Laplace transforms Transient problem Field intensity factor Energy release rate Exact solution Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 85(2014), 1 vom: 23. Aug., Seite 29-50 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:85 year:2014 number:1 day:23 month:08 pages:29-50 https://doi.org/10.1007/s00419-014-0898-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 AR 85 2014 1 23 08 29-50 |
allfieldsGer |
10.1007/s00419-014-0898-y doi (DE-627)OLC2071057171 (DE-He213)s00419-014-0898-y-p DE-627 ger DE-627 rakwb eng 690 VZ Rogowski, Bogdan verfasserin aut The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Laplace transform techniques are used to reduce the problem to the solution of one Fredholm integral equation in Laplace domain and second equation in real domain. The Laplace inversion yields the result in the time domain. The equation in real domain is solved exactly. The semipermeable crack-face magneto-electric boundary conditions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric and magnetic potentials and the energy release rate are determined. The electric displacement and magnetic induction of crack interior are discussed. Strong coupling between stress and electric and magnetic field near crack tips has been found. Numerical results are presented, and some conclusions are drawn. MEEMs half-space Dielectric crack Semipermeable condition Fourier and Laplace transforms Transient problem Field intensity factor Energy release rate Exact solution Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 85(2014), 1 vom: 23. Aug., Seite 29-50 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:85 year:2014 number:1 day:23 month:08 pages:29-50 https://doi.org/10.1007/s00419-014-0898-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 AR 85 2014 1 23 08 29-50 |
allfieldsSound |
10.1007/s00419-014-0898-y doi (DE-627)OLC2071057171 (DE-He213)s00419-014-0898-y-p DE-627 ger DE-627 rakwb eng 690 VZ Rogowski, Bogdan verfasserin aut The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Laplace transform techniques are used to reduce the problem to the solution of one Fredholm integral equation in Laplace domain and second equation in real domain. The Laplace inversion yields the result in the time domain. The equation in real domain is solved exactly. The semipermeable crack-face magneto-electric boundary conditions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric and magnetic potentials and the energy release rate are determined. The electric displacement and magnetic induction of crack interior are discussed. Strong coupling between stress and electric and magnetic field near crack tips has been found. Numerical results are presented, and some conclusions are drawn. MEEMs half-space Dielectric crack Semipermeable condition Fourier and Laplace transforms Transient problem Field intensity factor Energy release rate Exact solution Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 85(2014), 1 vom: 23. Aug., Seite 29-50 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:85 year:2014 number:1 day:23 month:08 pages:29-50 https://doi.org/10.1007/s00419-014-0898-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 AR 85 2014 1 23 08 29-50 |
language |
English |
source |
Enthalten in Archive of applied mechanics 85(2014), 1 vom: 23. Aug., Seite 29-50 volume:85 year:2014 number:1 day:23 month:08 pages:29-50 |
sourceStr |
Enthalten in Archive of applied mechanics 85(2014), 1 vom: 23. Aug., Seite 29-50 volume:85 year:2014 number:1 day:23 month:08 pages:29-50 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MEEMs half-space Dielectric crack Semipermeable condition Fourier and Laplace transforms Transient problem Field intensity factor Energy release rate Exact solution |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Archive of applied mechanics |
authorswithroles_txt_mv |
Rogowski, Bogdan @@aut@@ |
publishDateDaySort_date |
2014-08-23T00:00:00Z |
hierarchy_top_id |
130929700 |
dewey-sort |
3690 |
id |
OLC2071057171 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071057171</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403013610.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00419-014-0898-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071057171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00419-014-0898-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rogowski, Bogdan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Laplace transform techniques are used to reduce the problem to the solution of one Fredholm integral equation in Laplace domain and second equation in real domain. The Laplace inversion yields the result in the time domain. The equation in real domain is solved exactly. The semipermeable crack-face magneto-electric boundary conditions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric and magnetic potentials and the energy release rate are determined. The electric displacement and magnetic induction of crack interior are discussed. Strong coupling between stress and electric and magnetic field near crack tips has been found. Numerical results are presented, and some conclusions are drawn.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MEEMs half-space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectric crack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semipermeable condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier and Laplace transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field intensity factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy release rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact solution</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive of applied mechanics</subfield><subfield code="d">Springer Berlin Heidelberg, 1991</subfield><subfield code="g">85(2014), 1 vom: 23. Aug., Seite 29-50</subfield><subfield code="w">(DE-627)130929700</subfield><subfield code="w">(DE-600)1056088-9</subfield><subfield code="w">(DE-576)02508755X</subfield><subfield code="x">0939-1533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:85</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:23</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:29-50</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00419-014-0898-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">85</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">23</subfield><subfield code="c">08</subfield><subfield code="h">29-50</subfield></datafield></record></collection>
|
author |
Rogowski, Bogdan |
spellingShingle |
Rogowski, Bogdan ddc 690 misc MEEMs half-space misc Dielectric crack misc Semipermeable condition misc Fourier and Laplace transforms misc Transient problem misc Field intensity factor misc Energy release rate misc Exact solution The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts |
authorStr |
Rogowski, Bogdan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130929700 |
format |
Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0939-1533 |
topic_title |
690 VZ The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts MEEMs half-space Dielectric crack Semipermeable condition Fourier and Laplace transforms Transient problem Field intensity factor Energy release rate Exact solution |
topic |
ddc 690 misc MEEMs half-space misc Dielectric crack misc Semipermeable condition misc Fourier and Laplace transforms misc Transient problem misc Field intensity factor misc Energy release rate misc Exact solution |
topic_unstemmed |
ddc 690 misc MEEMs half-space misc Dielectric crack misc Semipermeable condition misc Fourier and Laplace transforms misc Transient problem misc Field intensity factor misc Energy release rate misc Exact solution |
topic_browse |
ddc 690 misc MEEMs half-space misc Dielectric crack misc Semipermeable condition misc Fourier and Laplace transforms misc Transient problem misc Field intensity factor misc Energy release rate misc Exact solution |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Archive of applied mechanics |
hierarchy_parent_id |
130929700 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Archive of applied mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X |
title |
The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts |
ctrlnum |
(DE-627)OLC2071057171 (DE-He213)s00419-014-0898-y-p |
title_full |
The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts |
author_sort |
Rogowski, Bogdan |
journal |
Archive of applied mechanics |
journalStr |
Archive of applied mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
29 |
author_browse |
Rogowski, Bogdan |
container_volume |
85 |
class |
690 VZ |
format_se |
Aufsätze |
author-letter |
Rogowski, Bogdan |
doi_str_mv |
10.1007/s00419-014-0898-y |
dewey-full |
690 |
title_sort |
the transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts |
title_auth |
The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts |
abstract |
Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Laplace transform techniques are used to reduce the problem to the solution of one Fredholm integral equation in Laplace domain and second equation in real domain. The Laplace inversion yields the result in the time domain. The equation in real domain is solved exactly. The semipermeable crack-face magneto-electric boundary conditions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric and magnetic potentials and the energy release rate are determined. The electric displacement and magnetic induction of crack interior are discussed. Strong coupling between stress and electric and magnetic field near crack tips has been found. Numerical results are presented, and some conclusions are drawn. © The Author(s) 2014 |
abstractGer |
Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Laplace transform techniques are used to reduce the problem to the solution of one Fredholm integral equation in Laplace domain and second equation in real domain. The Laplace inversion yields the result in the time domain. The equation in real domain is solved exactly. The semipermeable crack-face magneto-electric boundary conditions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric and magnetic potentials and the energy release rate are determined. The electric displacement and magnetic induction of crack interior are discussed. Strong coupling between stress and electric and magnetic field near crack tips has been found. Numerical results are presented, and some conclusions are drawn. © The Author(s) 2014 |
abstract_unstemmed |
Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Laplace transform techniques are used to reduce the problem to the solution of one Fredholm integral equation in Laplace domain and second equation in real domain. The Laplace inversion yields the result in the time domain. The equation in real domain is solved exactly. The semipermeable crack-face magneto-electric boundary conditions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric and magnetic potentials and the energy release rate are determined. The electric displacement and magnetic induction of crack interior are discussed. Strong coupling between stress and electric and magnetic field near crack tips has been found. Numerical results are presented, and some conclusions are drawn. © The Author(s) 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts |
url |
https://doi.org/10.1007/s00419-014-0898-y |
remote_bool |
false |
ppnlink |
130929700 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00419-014-0898-y |
up_date |
2024-07-04T02:50:36.271Z |
_version_ |
1803615140608737280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071057171</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403013610.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00419-014-0898-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071057171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00419-014-0898-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rogowski, Bogdan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper investigated the fracture behavior of a magneto-electro-elastic material subjected to transient electrical, magnetic and mechanical loads. The “smart” medium contains a straight-line crack, which is parallel to its poling direction and free boundary surface. The Fourier and Laplace transform techniques are used to reduce the problem to the solution of one Fredholm integral equation in Laplace domain and second equation in real domain. The Laplace inversion yields the result in the time domain. The equation in real domain is solved exactly. The semipermeable crack-face magneto-electric boundary conditions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric and magnetic potentials and the energy release rate are determined. The electric displacement and magnetic induction of crack interior are discussed. Strong coupling between stress and electric and magnetic field near crack tips has been found. Numerical results are presented, and some conclusions are drawn.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MEEMs half-space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectric crack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semipermeable condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier and Laplace transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field intensity factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy release rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact solution</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive of applied mechanics</subfield><subfield code="d">Springer Berlin Heidelberg, 1991</subfield><subfield code="g">85(2014), 1 vom: 23. Aug., Seite 29-50</subfield><subfield code="w">(DE-627)130929700</subfield><subfield code="w">(DE-600)1056088-9</subfield><subfield code="w">(DE-576)02508755X</subfield><subfield code="x">0939-1533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:85</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:23</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:29-50</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00419-014-0898-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">85</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">23</subfield><subfield code="c">08</subfield><subfield code="h">29-50</subfield></datafield></record></collection>
|
score |
7.402297 |