A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems
Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered...
Ausführliche Beschreibung
Autor*in: |
Pappalardo, Carmine Maria [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
Reference Point Coordinate Formulation (RPCF) |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Archive of applied mechanics - Springer Berlin Heidelberg, 1991, 88(2018), 12 vom: 06. Aug., Seite 2153-2177 |
---|---|
Übergeordnetes Werk: |
volume:88 ; year:2018 ; number:12 ; day:06 ; month:08 ; pages:2153-2177 |
Links: |
---|
DOI / URN: |
10.1007/s00419-018-1441-3 |
---|
Katalog-ID: |
OLC2071062396 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071062396 | ||
003 | DE-627 | ||
005 | 20230403013658.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00419-018-1441-3 |2 doi | |
035 | |a (DE-627)OLC2071062396 | ||
035 | |a (DE-He213)s00419-018-1441-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
100 | 1 | |a Pappalardo, Carmine Maria |e verfasserin |4 aut | |
245 | 1 | 0 | |a A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2018 | ||
520 | |a Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. | ||
650 | 4 | |a Multibody Systems (MBS) | |
650 | 4 | |a Reference Point Coordinate Formulation (RPCF) | |
650 | 4 | |a Natural Absolute Coordinate Formulation (NACF) | |
650 | 4 | |a Augmented Formulation (AF) | |
650 | 4 | |a Embedding Technique (ET) | |
650 | 4 | |a Amalgamated Formulation (AMF) | |
650 | 4 | |a Projection Method (PM) | |
650 | 4 | |a Udwadia–Kalaba Equations (UKE) | |
700 | 1 | |a Guida, Domenico |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Archive of applied mechanics |d Springer Berlin Heidelberg, 1991 |g 88(2018), 12 vom: 06. Aug., Seite 2153-2177 |w (DE-627)130929700 |w (DE-600)1056088-9 |w (DE-576)02508755X |x 0939-1533 |7 nnns |
773 | 1 | 8 | |g volume:88 |g year:2018 |g number:12 |g day:06 |g month:08 |g pages:2153-2177 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00419-018-1441-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 88 |j 2018 |e 12 |b 06 |c 08 |h 2153-2177 |
author_variant |
c m p cm cmp d g dg |
---|---|
matchkey_str |
article:09391533:2018----::cmaaietdoterniamtosotenltclomltoadhnmrclouinfheut |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00419-018-1441-3 doi (DE-627)OLC2071062396 (DE-He213)s00419-018-1441-3-p DE-627 ger DE-627 rakwb eng 690 VZ Pappalardo, Carmine Maria verfasserin aut A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. Multibody Systems (MBS) Reference Point Coordinate Formulation (RPCF) Natural Absolute Coordinate Formulation (NACF) Augmented Formulation (AF) Embedding Technique (ET) Amalgamated Formulation (AMF) Projection Method (PM) Udwadia–Kalaba Equations (UKE) Guida, Domenico aut Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 88(2018), 12 vom: 06. Aug., Seite 2153-2177 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 https://doi.org/10.1007/s00419-018-1441-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 AR 88 2018 12 06 08 2153-2177 |
spelling |
10.1007/s00419-018-1441-3 doi (DE-627)OLC2071062396 (DE-He213)s00419-018-1441-3-p DE-627 ger DE-627 rakwb eng 690 VZ Pappalardo, Carmine Maria verfasserin aut A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. Multibody Systems (MBS) Reference Point Coordinate Formulation (RPCF) Natural Absolute Coordinate Formulation (NACF) Augmented Formulation (AF) Embedding Technique (ET) Amalgamated Formulation (AMF) Projection Method (PM) Udwadia–Kalaba Equations (UKE) Guida, Domenico aut Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 88(2018), 12 vom: 06. Aug., Seite 2153-2177 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 https://doi.org/10.1007/s00419-018-1441-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 AR 88 2018 12 06 08 2153-2177 |
allfields_unstemmed |
10.1007/s00419-018-1441-3 doi (DE-627)OLC2071062396 (DE-He213)s00419-018-1441-3-p DE-627 ger DE-627 rakwb eng 690 VZ Pappalardo, Carmine Maria verfasserin aut A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. Multibody Systems (MBS) Reference Point Coordinate Formulation (RPCF) Natural Absolute Coordinate Formulation (NACF) Augmented Formulation (AF) Embedding Technique (ET) Amalgamated Formulation (AMF) Projection Method (PM) Udwadia–Kalaba Equations (UKE) Guida, Domenico aut Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 88(2018), 12 vom: 06. Aug., Seite 2153-2177 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 https://doi.org/10.1007/s00419-018-1441-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 AR 88 2018 12 06 08 2153-2177 |
allfieldsGer |
10.1007/s00419-018-1441-3 doi (DE-627)OLC2071062396 (DE-He213)s00419-018-1441-3-p DE-627 ger DE-627 rakwb eng 690 VZ Pappalardo, Carmine Maria verfasserin aut A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. Multibody Systems (MBS) Reference Point Coordinate Formulation (RPCF) Natural Absolute Coordinate Formulation (NACF) Augmented Formulation (AF) Embedding Technique (ET) Amalgamated Formulation (AMF) Projection Method (PM) Udwadia–Kalaba Equations (UKE) Guida, Domenico aut Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 88(2018), 12 vom: 06. Aug., Seite 2153-2177 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 https://doi.org/10.1007/s00419-018-1441-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 AR 88 2018 12 06 08 2153-2177 |
allfieldsSound |
10.1007/s00419-018-1441-3 doi (DE-627)OLC2071062396 (DE-He213)s00419-018-1441-3-p DE-627 ger DE-627 rakwb eng 690 VZ Pappalardo, Carmine Maria verfasserin aut A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. Multibody Systems (MBS) Reference Point Coordinate Formulation (RPCF) Natural Absolute Coordinate Formulation (NACF) Augmented Formulation (AF) Embedding Technique (ET) Amalgamated Formulation (AMF) Projection Method (PM) Udwadia–Kalaba Equations (UKE) Guida, Domenico aut Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 88(2018), 12 vom: 06. Aug., Seite 2153-2177 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 https://doi.org/10.1007/s00419-018-1441-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 AR 88 2018 12 06 08 2153-2177 |
language |
English |
source |
Enthalten in Archive of applied mechanics 88(2018), 12 vom: 06. Aug., Seite 2153-2177 volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 |
sourceStr |
Enthalten in Archive of applied mechanics 88(2018), 12 vom: 06. Aug., Seite 2153-2177 volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multibody Systems (MBS) Reference Point Coordinate Formulation (RPCF) Natural Absolute Coordinate Formulation (NACF) Augmented Formulation (AF) Embedding Technique (ET) Amalgamated Formulation (AMF) Projection Method (PM) Udwadia–Kalaba Equations (UKE) |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Archive of applied mechanics |
authorswithroles_txt_mv |
Pappalardo, Carmine Maria @@aut@@ Guida, Domenico @@aut@@ |
publishDateDaySort_date |
2018-08-06T00:00:00Z |
hierarchy_top_id |
130929700 |
dewey-sort |
3690 |
id |
OLC2071062396 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071062396</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403013658.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00419-018-1441-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071062396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00419-018-1441-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pappalardo, Carmine Maria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multibody Systems (MBS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reference Point Coordinate Formulation (RPCF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural Absolute Coordinate Formulation (NACF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Augmented Formulation (AF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embedding Technique (ET)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amalgamated Formulation (AMF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projection Method (PM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Udwadia–Kalaba Equations (UKE)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guida, Domenico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive of applied mechanics</subfield><subfield code="d">Springer Berlin Heidelberg, 1991</subfield><subfield code="g">88(2018), 12 vom: 06. Aug., Seite 2153-2177</subfield><subfield code="w">(DE-627)130929700</subfield><subfield code="w">(DE-600)1056088-9</subfield><subfield code="w">(DE-576)02508755X</subfield><subfield code="x">0939-1533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12</subfield><subfield code="g">day:06</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2153-2177</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00419-018-1441-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2018</subfield><subfield code="e">12</subfield><subfield code="b">06</subfield><subfield code="c">08</subfield><subfield code="h">2153-2177</subfield></datafield></record></collection>
|
author |
Pappalardo, Carmine Maria |
spellingShingle |
Pappalardo, Carmine Maria ddc 690 misc Multibody Systems (MBS) misc Reference Point Coordinate Formulation (RPCF) misc Natural Absolute Coordinate Formulation (NACF) misc Augmented Formulation (AF) misc Embedding Technique (ET) misc Amalgamated Formulation (AMF) misc Projection Method (PM) misc Udwadia–Kalaba Equations (UKE) A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
authorStr |
Pappalardo, Carmine Maria |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130929700 |
format |
Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0939-1533 |
topic_title |
690 VZ A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems Multibody Systems (MBS) Reference Point Coordinate Formulation (RPCF) Natural Absolute Coordinate Formulation (NACF) Augmented Formulation (AF) Embedding Technique (ET) Amalgamated Formulation (AMF) Projection Method (PM) Udwadia–Kalaba Equations (UKE) |
topic |
ddc 690 misc Multibody Systems (MBS) misc Reference Point Coordinate Formulation (RPCF) misc Natural Absolute Coordinate Formulation (NACF) misc Augmented Formulation (AF) misc Embedding Technique (ET) misc Amalgamated Formulation (AMF) misc Projection Method (PM) misc Udwadia–Kalaba Equations (UKE) |
topic_unstemmed |
ddc 690 misc Multibody Systems (MBS) misc Reference Point Coordinate Formulation (RPCF) misc Natural Absolute Coordinate Formulation (NACF) misc Augmented Formulation (AF) misc Embedding Technique (ET) misc Amalgamated Formulation (AMF) misc Projection Method (PM) misc Udwadia–Kalaba Equations (UKE) |
topic_browse |
ddc 690 misc Multibody Systems (MBS) misc Reference Point Coordinate Formulation (RPCF) misc Natural Absolute Coordinate Formulation (NACF) misc Augmented Formulation (AF) misc Embedding Technique (ET) misc Amalgamated Formulation (AMF) misc Projection Method (PM) misc Udwadia–Kalaba Equations (UKE) |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Archive of applied mechanics |
hierarchy_parent_id |
130929700 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Archive of applied mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X |
title |
A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
ctrlnum |
(DE-627)OLC2071062396 (DE-He213)s00419-018-1441-3-p |
title_full |
A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
author_sort |
Pappalardo, Carmine Maria |
journal |
Archive of applied mechanics |
journalStr |
Archive of applied mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
2153 |
author_browse |
Pappalardo, Carmine Maria Guida, Domenico |
container_volume |
88 |
class |
690 VZ |
format_se |
Aufsätze |
author-letter |
Pappalardo, Carmine Maria |
doi_str_mv |
10.1007/s00419-018-1441-3 |
dewey-full |
690 |
title_sort |
a comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
title_auth |
A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
abstract |
Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstractGer |
Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 |
container_issue |
12 |
title_short |
A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
url |
https://doi.org/10.1007/s00419-018-1441-3 |
remote_bool |
false |
author2 |
Guida, Domenico |
author2Str |
Guida, Domenico |
ppnlink |
130929700 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00419-018-1441-3 |
up_date |
2024-07-04T02:51:19.752Z |
_version_ |
1803615186203967488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071062396</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403013658.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00419-018-1441-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071062396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00419-018-1441-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pappalardo, Carmine Maria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multibody Systems (MBS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reference Point Coordinate Formulation (RPCF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural Absolute Coordinate Formulation (NACF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Augmented Formulation (AF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embedding Technique (ET)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amalgamated Formulation (AMF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projection Method (PM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Udwadia–Kalaba Equations (UKE)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guida, Domenico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive of applied mechanics</subfield><subfield code="d">Springer Berlin Heidelberg, 1991</subfield><subfield code="g">88(2018), 12 vom: 06. Aug., Seite 2153-2177</subfield><subfield code="w">(DE-627)130929700</subfield><subfield code="w">(DE-600)1056088-9</subfield><subfield code="w">(DE-576)02508755X</subfield><subfield code="x">0939-1533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12</subfield><subfield code="g">day:06</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2153-2177</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00419-018-1441-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2018</subfield><subfield code="e">12</subfield><subfield code="b">06</subfield><subfield code="c">08</subfield><subfield code="h">2153-2177</subfield></datafield></record></collection>
|
score |
7.399967 |