On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots
Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical syst...
Ausführliche Beschreibung
Autor*in: |
Pappalardo, Carmine M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Archive of applied mechanics - Springer Berlin Heidelberg, 1991, 89(2018), 4 vom: 15. Nov., Seite 669-698 |
---|---|
Übergeordnetes Werk: |
volume:89 ; year:2018 ; number:4 ; day:15 ; month:11 ; pages:669-698 |
Links: |
---|
DOI / URN: |
10.1007/s00419-018-1491-6 |
---|
Katalog-ID: |
OLC207106285X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC207106285X | ||
003 | DE-627 | ||
005 | 20230403013716.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00419-018-1491-6 |2 doi | |
035 | |a (DE-627)OLC207106285X | ||
035 | |a (DE-He213)s00419-018-1491-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
100 | 1 | |a Pappalardo, Carmine M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2018 | ||
520 | |a Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot. | ||
650 | 4 | |a Mechanical systems | |
650 | 4 | |a Forward dynamics | |
650 | 4 | |a Inverse dynamics | |
650 | 4 | |a Holonomic and nonholonomic constraints | |
650 | 4 | |a Uderactuated robots | |
650 | 4 | |a Udwadia–Kalaba equations | |
650 | 4 | |a Underactuation Equivalence Principle | |
700 | 1 | |a Guida, Domenico |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Archive of applied mechanics |d Springer Berlin Heidelberg, 1991 |g 89(2018), 4 vom: 15. Nov., Seite 669-698 |w (DE-627)130929700 |w (DE-600)1056088-9 |w (DE-576)02508755X |x 0939-1533 |7 nnns |
773 | 1 | 8 | |g volume:89 |g year:2018 |g number:4 |g day:15 |g month:11 |g pages:669-698 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00419-018-1491-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 89 |j 2018 |e 4 |b 15 |c 11 |h 669-698 |
author_variant |
c m p cm cmp d g dg |
---|---|
matchkey_str |
article:09391533:2018----::nhdnmcadotooudrcutdohlnmcehnclytmadp |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00419-018-1491-6 doi (DE-627)OLC207106285X (DE-He213)s00419-018-1491-6-p DE-627 ger DE-627 rakwb eng 690 VZ Pappalardo, Carmine M. verfasserin aut On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot. Mechanical systems Forward dynamics Inverse dynamics Holonomic and nonholonomic constraints Uderactuated robots Udwadia–Kalaba equations Underactuation Equivalence Principle Guida, Domenico aut Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 89(2018), 4 vom: 15. Nov., Seite 669-698 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:89 year:2018 number:4 day:15 month:11 pages:669-698 https://doi.org/10.1007/s00419-018-1491-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 AR 89 2018 4 15 11 669-698 |
spelling |
10.1007/s00419-018-1491-6 doi (DE-627)OLC207106285X (DE-He213)s00419-018-1491-6-p DE-627 ger DE-627 rakwb eng 690 VZ Pappalardo, Carmine M. verfasserin aut On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot. Mechanical systems Forward dynamics Inverse dynamics Holonomic and nonholonomic constraints Uderactuated robots Udwadia–Kalaba equations Underactuation Equivalence Principle Guida, Domenico aut Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 89(2018), 4 vom: 15. Nov., Seite 669-698 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:89 year:2018 number:4 day:15 month:11 pages:669-698 https://doi.org/10.1007/s00419-018-1491-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 AR 89 2018 4 15 11 669-698 |
allfields_unstemmed |
10.1007/s00419-018-1491-6 doi (DE-627)OLC207106285X (DE-He213)s00419-018-1491-6-p DE-627 ger DE-627 rakwb eng 690 VZ Pappalardo, Carmine M. verfasserin aut On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot. Mechanical systems Forward dynamics Inverse dynamics Holonomic and nonholonomic constraints Uderactuated robots Udwadia–Kalaba equations Underactuation Equivalence Principle Guida, Domenico aut Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 89(2018), 4 vom: 15. Nov., Seite 669-698 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:89 year:2018 number:4 day:15 month:11 pages:669-698 https://doi.org/10.1007/s00419-018-1491-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 AR 89 2018 4 15 11 669-698 |
allfieldsGer |
10.1007/s00419-018-1491-6 doi (DE-627)OLC207106285X (DE-He213)s00419-018-1491-6-p DE-627 ger DE-627 rakwb eng 690 VZ Pappalardo, Carmine M. verfasserin aut On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot. Mechanical systems Forward dynamics Inverse dynamics Holonomic and nonholonomic constraints Uderactuated robots Udwadia–Kalaba equations Underactuation Equivalence Principle Guida, Domenico aut Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 89(2018), 4 vom: 15. Nov., Seite 669-698 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:89 year:2018 number:4 day:15 month:11 pages:669-698 https://doi.org/10.1007/s00419-018-1491-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 AR 89 2018 4 15 11 669-698 |
allfieldsSound |
10.1007/s00419-018-1491-6 doi (DE-627)OLC207106285X (DE-He213)s00419-018-1491-6-p DE-627 ger DE-627 rakwb eng 690 VZ Pappalardo, Carmine M. verfasserin aut On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot. Mechanical systems Forward dynamics Inverse dynamics Holonomic and nonholonomic constraints Uderactuated robots Udwadia–Kalaba equations Underactuation Equivalence Principle Guida, Domenico aut Enthalten in Archive of applied mechanics Springer Berlin Heidelberg, 1991 89(2018), 4 vom: 15. Nov., Seite 669-698 (DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X 0939-1533 nnns volume:89 year:2018 number:4 day:15 month:11 pages:669-698 https://doi.org/10.1007/s00419-018-1491-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 AR 89 2018 4 15 11 669-698 |
language |
English |
source |
Enthalten in Archive of applied mechanics 89(2018), 4 vom: 15. Nov., Seite 669-698 volume:89 year:2018 number:4 day:15 month:11 pages:669-698 |
sourceStr |
Enthalten in Archive of applied mechanics 89(2018), 4 vom: 15. Nov., Seite 669-698 volume:89 year:2018 number:4 day:15 month:11 pages:669-698 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mechanical systems Forward dynamics Inverse dynamics Holonomic and nonholonomic constraints Uderactuated robots Udwadia–Kalaba equations Underactuation Equivalence Principle |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Archive of applied mechanics |
authorswithroles_txt_mv |
Pappalardo, Carmine M. @@aut@@ Guida, Domenico @@aut@@ |
publishDateDaySort_date |
2018-11-15T00:00:00Z |
hierarchy_top_id |
130929700 |
dewey-sort |
3690 |
id |
OLC207106285X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207106285X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403013716.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00419-018-1491-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207106285X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00419-018-1491-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pappalardo, Carmine M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forward dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holonomic and nonholonomic constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uderactuated robots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Udwadia–Kalaba equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Underactuation Equivalence Principle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guida, Domenico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive of applied mechanics</subfield><subfield code="d">Springer Berlin Heidelberg, 1991</subfield><subfield code="g">89(2018), 4 vom: 15. Nov., Seite 669-698</subfield><subfield code="w">(DE-627)130929700</subfield><subfield code="w">(DE-600)1056088-9</subfield><subfield code="w">(DE-576)02508755X</subfield><subfield code="x">0939-1533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">day:15</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:669-698</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00419-018-1491-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="b">15</subfield><subfield code="c">11</subfield><subfield code="h">669-698</subfield></datafield></record></collection>
|
author |
Pappalardo, Carmine M. |
spellingShingle |
Pappalardo, Carmine M. ddc 690 misc Mechanical systems misc Forward dynamics misc Inverse dynamics misc Holonomic and nonholonomic constraints misc Uderactuated robots misc Udwadia–Kalaba equations misc Underactuation Equivalence Principle On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots |
authorStr |
Pappalardo, Carmine M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130929700 |
format |
Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0939-1533 |
topic_title |
690 VZ On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots Mechanical systems Forward dynamics Inverse dynamics Holonomic and nonholonomic constraints Uderactuated robots Udwadia–Kalaba equations Underactuation Equivalence Principle |
topic |
ddc 690 misc Mechanical systems misc Forward dynamics misc Inverse dynamics misc Holonomic and nonholonomic constraints misc Uderactuated robots misc Udwadia–Kalaba equations misc Underactuation Equivalence Principle |
topic_unstemmed |
ddc 690 misc Mechanical systems misc Forward dynamics misc Inverse dynamics misc Holonomic and nonholonomic constraints misc Uderactuated robots misc Udwadia–Kalaba equations misc Underactuation Equivalence Principle |
topic_browse |
ddc 690 misc Mechanical systems misc Forward dynamics misc Inverse dynamics misc Holonomic and nonholonomic constraints misc Uderactuated robots misc Udwadia–Kalaba equations misc Underactuation Equivalence Principle |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Archive of applied mechanics |
hierarchy_parent_id |
130929700 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Archive of applied mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130929700 (DE-600)1056088-9 (DE-576)02508755X |
title |
On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots |
ctrlnum |
(DE-627)OLC207106285X (DE-He213)s00419-018-1491-6-p |
title_full |
On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots |
author_sort |
Pappalardo, Carmine M. |
journal |
Archive of applied mechanics |
journalStr |
Archive of applied mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
669 |
author_browse |
Pappalardo, Carmine M. Guida, Domenico |
container_volume |
89 |
class |
690 VZ |
format_se |
Aufsätze |
author-letter |
Pappalardo, Carmine M. |
doi_str_mv |
10.1007/s00419-018-1491-6 |
dewey-full |
690 |
title_sort |
on the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots |
title_auth |
On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots |
abstract |
Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstractGer |
Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_150 GBV_ILN_267 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2119 GBV_ILN_2333 GBV_ILN_4277 |
container_issue |
4 |
title_short |
On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots |
url |
https://doi.org/10.1007/s00419-018-1491-6 |
remote_bool |
false |
author2 |
Guida, Domenico |
author2Str |
Guida, Domenico |
ppnlink |
130929700 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00419-018-1491-6 |
up_date |
2024-07-04T02:51:23.924Z |
_version_ |
1803615190576529408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207106285X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403013716.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00419-018-1491-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207106285X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00419-018-1491-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pappalardo, Carmine M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forward dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holonomic and nonholonomic constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uderactuated robots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Udwadia–Kalaba equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Underactuation Equivalence Principle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guida, Domenico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive of applied mechanics</subfield><subfield code="d">Springer Berlin Heidelberg, 1991</subfield><subfield code="g">89(2018), 4 vom: 15. Nov., Seite 669-698</subfield><subfield code="w">(DE-627)130929700</subfield><subfield code="w">(DE-600)1056088-9</subfield><subfield code="w">(DE-576)02508755X</subfield><subfield code="x">0939-1533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">day:15</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:669-698</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00419-018-1491-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="b">15</subfield><subfield code="c">11</subfield><subfield code="h">669-698</subfield></datafield></record></collection>
|
score |
7.4030848 |