Analysis of stability of a homogeneous state of anisotropic plasma
Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion rel...
Ausführliche Beschreibung
Autor*in: |
Zakharov, V. Yu. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Plasma physics reports - Pleiades Publishing, 1993, 41(2015), 4 vom: Apr., Seite 355-359 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2015 ; number:4 ; month:04 ; pages:355-359 |
Links: |
---|
DOI / URN: |
10.1134/S1063780X15030071 |
---|
Katalog-ID: |
OLC2071115147 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071115147 | ||
003 | DE-627 | ||
005 | 20230504111921.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S1063780X15030071 |2 doi | |
035 | |a (DE-627)OLC2071115147 | ||
035 | |a (DE-He213)S1063780X15030071-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Zakharov, V. Yu. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of stability of a homogeneous state of anisotropic plasma |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2015 | ||
520 | |a Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves. | ||
650 | 4 | |a Positive Root | |
650 | 4 | |a Real Root | |
650 | 4 | |a Plasma Physic Report | |
650 | 4 | |a Plasma Phys | |
650 | 4 | |a Homogeneous State | |
700 | 1 | |a Chernova, T. G. |4 aut | |
700 | 1 | |a Stepanov, S. E. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Plasma physics reports |d Pleiades Publishing, 1993 |g 41(2015), 4 vom: Apr., Seite 355-359 |w (DE-627)171253191 |w (DE-600)1170407-X |w (DE-576)03886956X |x 1063-780X |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2015 |g number:4 |g month:04 |g pages:355-359 |
856 | 4 | 1 | |u https://doi.org/10.1134/S1063780X15030071 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 41 |j 2015 |e 4 |c 04 |h 355-359 |
author_variant |
v y z vy vyz t g c tg tgc s e s se ses |
---|---|
matchkey_str |
article:1063780X:2015----::nlssftbltoaooeeusaefn |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1134/S1063780X15030071 doi (DE-627)OLC2071115147 (DE-He213)S1063780X15030071-p DE-627 ger DE-627 rakwb eng 530 VZ Zakharov, V. Yu. verfasserin aut Analysis of stability of a homogeneous state of anisotropic plasma 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves. Positive Root Real Root Plasma Physic Report Plasma Phys Homogeneous State Chernova, T. G. aut Stepanov, S. E. aut Enthalten in Plasma physics reports Pleiades Publishing, 1993 41(2015), 4 vom: Apr., Seite 355-359 (DE-627)171253191 (DE-600)1170407-X (DE-576)03886956X 1063-780X nnns volume:41 year:2015 number:4 month:04 pages:355-359 https://doi.org/10.1134/S1063780X15030071 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 41 2015 4 04 355-359 |
spelling |
10.1134/S1063780X15030071 doi (DE-627)OLC2071115147 (DE-He213)S1063780X15030071-p DE-627 ger DE-627 rakwb eng 530 VZ Zakharov, V. Yu. verfasserin aut Analysis of stability of a homogeneous state of anisotropic plasma 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves. Positive Root Real Root Plasma Physic Report Plasma Phys Homogeneous State Chernova, T. G. aut Stepanov, S. E. aut Enthalten in Plasma physics reports Pleiades Publishing, 1993 41(2015), 4 vom: Apr., Seite 355-359 (DE-627)171253191 (DE-600)1170407-X (DE-576)03886956X 1063-780X nnns volume:41 year:2015 number:4 month:04 pages:355-359 https://doi.org/10.1134/S1063780X15030071 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 41 2015 4 04 355-359 |
allfields_unstemmed |
10.1134/S1063780X15030071 doi (DE-627)OLC2071115147 (DE-He213)S1063780X15030071-p DE-627 ger DE-627 rakwb eng 530 VZ Zakharov, V. Yu. verfasserin aut Analysis of stability of a homogeneous state of anisotropic plasma 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves. Positive Root Real Root Plasma Physic Report Plasma Phys Homogeneous State Chernova, T. G. aut Stepanov, S. E. aut Enthalten in Plasma physics reports Pleiades Publishing, 1993 41(2015), 4 vom: Apr., Seite 355-359 (DE-627)171253191 (DE-600)1170407-X (DE-576)03886956X 1063-780X nnns volume:41 year:2015 number:4 month:04 pages:355-359 https://doi.org/10.1134/S1063780X15030071 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 41 2015 4 04 355-359 |
allfieldsGer |
10.1134/S1063780X15030071 doi (DE-627)OLC2071115147 (DE-He213)S1063780X15030071-p DE-627 ger DE-627 rakwb eng 530 VZ Zakharov, V. Yu. verfasserin aut Analysis of stability of a homogeneous state of anisotropic plasma 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves. Positive Root Real Root Plasma Physic Report Plasma Phys Homogeneous State Chernova, T. G. aut Stepanov, S. E. aut Enthalten in Plasma physics reports Pleiades Publishing, 1993 41(2015), 4 vom: Apr., Seite 355-359 (DE-627)171253191 (DE-600)1170407-X (DE-576)03886956X 1063-780X nnns volume:41 year:2015 number:4 month:04 pages:355-359 https://doi.org/10.1134/S1063780X15030071 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 41 2015 4 04 355-359 |
allfieldsSound |
10.1134/S1063780X15030071 doi (DE-627)OLC2071115147 (DE-He213)S1063780X15030071-p DE-627 ger DE-627 rakwb eng 530 VZ Zakharov, V. Yu. verfasserin aut Analysis of stability of a homogeneous state of anisotropic plasma 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves. Positive Root Real Root Plasma Physic Report Plasma Phys Homogeneous State Chernova, T. G. aut Stepanov, S. E. aut Enthalten in Plasma physics reports Pleiades Publishing, 1993 41(2015), 4 vom: Apr., Seite 355-359 (DE-627)171253191 (DE-600)1170407-X (DE-576)03886956X 1063-780X nnns volume:41 year:2015 number:4 month:04 pages:355-359 https://doi.org/10.1134/S1063780X15030071 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 41 2015 4 04 355-359 |
language |
English |
source |
Enthalten in Plasma physics reports 41(2015), 4 vom: Apr., Seite 355-359 volume:41 year:2015 number:4 month:04 pages:355-359 |
sourceStr |
Enthalten in Plasma physics reports 41(2015), 4 vom: Apr., Seite 355-359 volume:41 year:2015 number:4 month:04 pages:355-359 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Positive Root Real Root Plasma Physic Report Plasma Phys Homogeneous State |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Plasma physics reports |
authorswithroles_txt_mv |
Zakharov, V. Yu. @@aut@@ Chernova, T. G. @@aut@@ Stepanov, S. E. @@aut@@ |
publishDateDaySort_date |
2015-04-01T00:00:00Z |
hierarchy_top_id |
171253191 |
dewey-sort |
3530 |
id |
OLC2071115147 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071115147</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504111921.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1063780X15030071</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071115147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S1063780X15030071-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zakharov, V. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of stability of a homogeneous state of anisotropic plasma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Root</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Root</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Physic Report</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Phys</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous State</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chernova, T. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stepanov, S. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Plasma physics reports</subfield><subfield code="d">Pleiades Publishing, 1993</subfield><subfield code="g">41(2015), 4 vom: Apr., Seite 355-359</subfield><subfield code="w">(DE-627)171253191</subfield><subfield code="w">(DE-600)1170407-X</subfield><subfield code="w">(DE-576)03886956X</subfield><subfield code="x">1063-780X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:355-359</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S1063780X15030071</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">355-359</subfield></datafield></record></collection>
|
author |
Zakharov, V. Yu. |
spellingShingle |
Zakharov, V. Yu. ddc 530 misc Positive Root misc Real Root misc Plasma Physic Report misc Plasma Phys misc Homogeneous State Analysis of stability of a homogeneous state of anisotropic plasma |
authorStr |
Zakharov, V. Yu. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171253191 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-780X |
topic_title |
530 VZ Analysis of stability of a homogeneous state of anisotropic plasma Positive Root Real Root Plasma Physic Report Plasma Phys Homogeneous State |
topic |
ddc 530 misc Positive Root misc Real Root misc Plasma Physic Report misc Plasma Phys misc Homogeneous State |
topic_unstemmed |
ddc 530 misc Positive Root misc Real Root misc Plasma Physic Report misc Plasma Phys misc Homogeneous State |
topic_browse |
ddc 530 misc Positive Root misc Real Root misc Plasma Physic Report misc Plasma Phys misc Homogeneous State |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Plasma physics reports |
hierarchy_parent_id |
171253191 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Plasma physics reports |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171253191 (DE-600)1170407-X (DE-576)03886956X |
title |
Analysis of stability of a homogeneous state of anisotropic plasma |
ctrlnum |
(DE-627)OLC2071115147 (DE-He213)S1063780X15030071-p |
title_full |
Analysis of stability of a homogeneous state of anisotropic plasma |
author_sort |
Zakharov, V. Yu. |
journal |
Plasma physics reports |
journalStr |
Plasma physics reports |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
355 |
author_browse |
Zakharov, V. Yu. Chernova, T. G. Stepanov, S. E. |
container_volume |
41 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Zakharov, V. Yu. |
doi_str_mv |
10.1134/S1063780X15030071 |
dewey-full |
530 |
title_sort |
analysis of stability of a homogeneous state of anisotropic plasma |
title_auth |
Analysis of stability of a homogeneous state of anisotropic plasma |
abstract |
Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves. © Pleiades Publishing, Ltd. 2015 |
abstractGer |
Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves. © Pleiades Publishing, Ltd. 2015 |
abstract_unstemmed |
Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves. © Pleiades Publishing, Ltd. 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
4 |
title_short |
Analysis of stability of a homogeneous state of anisotropic plasma |
url |
https://doi.org/10.1134/S1063780X15030071 |
remote_bool |
false |
author2 |
Chernova, T. G. Stepanov, S. E. |
author2Str |
Chernova, T. G. Stepanov, S. E. |
ppnlink |
171253191 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S1063780X15030071 |
up_date |
2024-07-04T02:58:57.850Z |
_version_ |
1803615666556633088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071115147</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504111921.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1063780X15030071</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071115147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S1063780X15030071-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zakharov, V. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of stability of a homogeneous state of anisotropic plasma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Root</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Root</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Physic Report</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Phys</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous State</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chernova, T. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stepanov, S. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Plasma physics reports</subfield><subfield code="d">Pleiades Publishing, 1993</subfield><subfield code="g">41(2015), 4 vom: Apr., Seite 355-359</subfield><subfield code="w">(DE-627)171253191</subfield><subfield code="w">(DE-600)1170407-X</subfield><subfield code="w">(DE-576)03886956X</subfield><subfield code="x">1063-780X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:355-359</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S1063780X15030071</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">355-359</subfield></datafield></record></collection>
|
score |
7.4006968 |