On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics
Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal...
Ausführliche Beschreibung
Autor*in: |
Babin, A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1998 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 1998 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and computational fluid dynamics - Springer-Verlag, 1989, 11(1998), 3-4 vom: Juni, Seite 215-235 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:1998 ; number:3-4 ; month:06 ; pages:215-235 |
Links: |
---|
DOI / URN: |
10.1007/s001620050090 |
---|
Katalog-ID: |
OLC2071160517 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071160517 | ||
003 | DE-627 | ||
005 | 20230401070734.0 | ||
007 | tu | ||
008 | 200820s1998 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s001620050090 |2 doi | |
035 | |a (DE-627)OLC2071160517 | ||
035 | |a (DE-He213)s001620050090-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 510 |a 530 |q VZ |
100 | 1 | |a Babin, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics |
264 | 1 | |c 1998 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 1998 | ||
520 | |a Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal wind imbalance) are analyzed. We describe classes of nonlinear anisotropic ageostrophic baroclinic waves which are generated by the strong nonlinear interactions between the quasi-geostrophic modes and inertio-gravity waves. In the asymptotic regime of strong stratification and weak rotation we show how switching on weak rotation triggers frontogenesis. The mechanism of the front formation is contraction in the horizontal dimension balanced by vertical shearing through coupling of large horizontal and small vertical scales by weak rotation. Vertical slanting of these fronts is proportional to $ μ^{−1/2} $ where μ is the ratio of the Coriolis and Brunt–Väisälä parameters. These fronts select slow baroclinic waves through nonlinear adjustment of the horizontal scale to the vertical scale by weak rotation, and are the envelope of inertio-gravity waves. Mathematically, this is generated by asymptotic hyperbolic systems describing the strong nonlinear interactions between waves and potential vorticity dynamics. This frontogenesis yields vertical “gluing” of pancake dynamics, in contrast to the independent dynamics of horizontal layers in strongly stratified turbulence without rotation. | ||
650 | 4 | |a Vorticity | |
650 | 4 | |a Potential Vorticity | |
650 | 4 | |a Vertical Scale | |
650 | 4 | |a Vertical Shearing | |
650 | 4 | |a Boussinesq Equation | |
700 | 1 | |a Mahalov, A. |4 aut | |
700 | 1 | |a Nicolaenko, B. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and computational fluid dynamics |d Springer-Verlag, 1989 |g 11(1998), 3-4 vom: Juni, Seite 215-235 |w (DE-627)130799521 |w (DE-600)1007949-X |w (DE-576)023042370 |x 0935-4964 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:1998 |g number:3-4 |g month:06 |g pages:215-235 |
856 | 4 | 1 | |u https://doi.org/10.1007/s001620050090 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4302 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 11 |j 1998 |e 3-4 |c 06 |h 215-235 |
author_variant |
a b ab a m am b n bn |
---|---|
matchkey_str |
article:09354964:1998----::nolnabrciiwvsnajsmnop |
hierarchy_sort_str |
1998 |
publishDate |
1998 |
allfields |
10.1007/s001620050090 doi (DE-627)OLC2071160517 (DE-He213)s001620050090-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Babin, A. verfasserin aut On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1998 Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal wind imbalance) are analyzed. We describe classes of nonlinear anisotropic ageostrophic baroclinic waves which are generated by the strong nonlinear interactions between the quasi-geostrophic modes and inertio-gravity waves. In the asymptotic regime of strong stratification and weak rotation we show how switching on weak rotation triggers frontogenesis. The mechanism of the front formation is contraction in the horizontal dimension balanced by vertical shearing through coupling of large horizontal and small vertical scales by weak rotation. Vertical slanting of these fronts is proportional to $ μ^{−1/2} $ where μ is the ratio of the Coriolis and Brunt–Väisälä parameters. These fronts select slow baroclinic waves through nonlinear adjustment of the horizontal scale to the vertical scale by weak rotation, and are the envelope of inertio-gravity waves. Mathematically, this is generated by asymptotic hyperbolic systems describing the strong nonlinear interactions between waves and potential vorticity dynamics. This frontogenesis yields vertical “gluing” of pancake dynamics, in contrast to the independent dynamics of horizontal layers in strongly stratified turbulence without rotation. Vorticity Potential Vorticity Vertical Scale Vertical Shearing Boussinesq Equation Mahalov, A. aut Nicolaenko, B. aut Enthalten in Theoretical and computational fluid dynamics Springer-Verlag, 1989 11(1998), 3-4 vom: Juni, Seite 215-235 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:11 year:1998 number:3-4 month:06 pages:215-235 https://doi.org/10.1007/s001620050090 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 AR 11 1998 3-4 06 215-235 |
spelling |
10.1007/s001620050090 doi (DE-627)OLC2071160517 (DE-He213)s001620050090-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Babin, A. verfasserin aut On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1998 Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal wind imbalance) are analyzed. We describe classes of nonlinear anisotropic ageostrophic baroclinic waves which are generated by the strong nonlinear interactions between the quasi-geostrophic modes and inertio-gravity waves. In the asymptotic regime of strong stratification and weak rotation we show how switching on weak rotation triggers frontogenesis. The mechanism of the front formation is contraction in the horizontal dimension balanced by vertical shearing through coupling of large horizontal and small vertical scales by weak rotation. Vertical slanting of these fronts is proportional to $ μ^{−1/2} $ where μ is the ratio of the Coriolis and Brunt–Väisälä parameters. These fronts select slow baroclinic waves through nonlinear adjustment of the horizontal scale to the vertical scale by weak rotation, and are the envelope of inertio-gravity waves. Mathematically, this is generated by asymptotic hyperbolic systems describing the strong nonlinear interactions between waves and potential vorticity dynamics. This frontogenesis yields vertical “gluing” of pancake dynamics, in contrast to the independent dynamics of horizontal layers in strongly stratified turbulence without rotation. Vorticity Potential Vorticity Vertical Scale Vertical Shearing Boussinesq Equation Mahalov, A. aut Nicolaenko, B. aut Enthalten in Theoretical and computational fluid dynamics Springer-Verlag, 1989 11(1998), 3-4 vom: Juni, Seite 215-235 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:11 year:1998 number:3-4 month:06 pages:215-235 https://doi.org/10.1007/s001620050090 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 AR 11 1998 3-4 06 215-235 |
allfields_unstemmed |
10.1007/s001620050090 doi (DE-627)OLC2071160517 (DE-He213)s001620050090-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Babin, A. verfasserin aut On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1998 Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal wind imbalance) are analyzed. We describe classes of nonlinear anisotropic ageostrophic baroclinic waves which are generated by the strong nonlinear interactions between the quasi-geostrophic modes and inertio-gravity waves. In the asymptotic regime of strong stratification and weak rotation we show how switching on weak rotation triggers frontogenesis. The mechanism of the front formation is contraction in the horizontal dimension balanced by vertical shearing through coupling of large horizontal and small vertical scales by weak rotation. Vertical slanting of these fronts is proportional to $ μ^{−1/2} $ where μ is the ratio of the Coriolis and Brunt–Väisälä parameters. These fronts select slow baroclinic waves through nonlinear adjustment of the horizontal scale to the vertical scale by weak rotation, and are the envelope of inertio-gravity waves. Mathematically, this is generated by asymptotic hyperbolic systems describing the strong nonlinear interactions between waves and potential vorticity dynamics. This frontogenesis yields vertical “gluing” of pancake dynamics, in contrast to the independent dynamics of horizontal layers in strongly stratified turbulence without rotation. Vorticity Potential Vorticity Vertical Scale Vertical Shearing Boussinesq Equation Mahalov, A. aut Nicolaenko, B. aut Enthalten in Theoretical and computational fluid dynamics Springer-Verlag, 1989 11(1998), 3-4 vom: Juni, Seite 215-235 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:11 year:1998 number:3-4 month:06 pages:215-235 https://doi.org/10.1007/s001620050090 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 AR 11 1998 3-4 06 215-235 |
allfieldsGer |
10.1007/s001620050090 doi (DE-627)OLC2071160517 (DE-He213)s001620050090-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Babin, A. verfasserin aut On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1998 Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal wind imbalance) are analyzed. We describe classes of nonlinear anisotropic ageostrophic baroclinic waves which are generated by the strong nonlinear interactions between the quasi-geostrophic modes and inertio-gravity waves. In the asymptotic regime of strong stratification and weak rotation we show how switching on weak rotation triggers frontogenesis. The mechanism of the front formation is contraction in the horizontal dimension balanced by vertical shearing through coupling of large horizontal and small vertical scales by weak rotation. Vertical slanting of these fronts is proportional to $ μ^{−1/2} $ where μ is the ratio of the Coriolis and Brunt–Väisälä parameters. These fronts select slow baroclinic waves through nonlinear adjustment of the horizontal scale to the vertical scale by weak rotation, and are the envelope of inertio-gravity waves. Mathematically, this is generated by asymptotic hyperbolic systems describing the strong nonlinear interactions between waves and potential vorticity dynamics. This frontogenesis yields vertical “gluing” of pancake dynamics, in contrast to the independent dynamics of horizontal layers in strongly stratified turbulence without rotation. Vorticity Potential Vorticity Vertical Scale Vertical Shearing Boussinesq Equation Mahalov, A. aut Nicolaenko, B. aut Enthalten in Theoretical and computational fluid dynamics Springer-Verlag, 1989 11(1998), 3-4 vom: Juni, Seite 215-235 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:11 year:1998 number:3-4 month:06 pages:215-235 https://doi.org/10.1007/s001620050090 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 AR 11 1998 3-4 06 215-235 |
allfieldsSound |
10.1007/s001620050090 doi (DE-627)OLC2071160517 (DE-He213)s001620050090-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Babin, A. verfasserin aut On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1998 Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal wind imbalance) are analyzed. We describe classes of nonlinear anisotropic ageostrophic baroclinic waves which are generated by the strong nonlinear interactions between the quasi-geostrophic modes and inertio-gravity waves. In the asymptotic regime of strong stratification and weak rotation we show how switching on weak rotation triggers frontogenesis. The mechanism of the front formation is contraction in the horizontal dimension balanced by vertical shearing through coupling of large horizontal and small vertical scales by weak rotation. Vertical slanting of these fronts is proportional to $ μ^{−1/2} $ where μ is the ratio of the Coriolis and Brunt–Väisälä parameters. These fronts select slow baroclinic waves through nonlinear adjustment of the horizontal scale to the vertical scale by weak rotation, and are the envelope of inertio-gravity waves. Mathematically, this is generated by asymptotic hyperbolic systems describing the strong nonlinear interactions between waves and potential vorticity dynamics. This frontogenesis yields vertical “gluing” of pancake dynamics, in contrast to the independent dynamics of horizontal layers in strongly stratified turbulence without rotation. Vorticity Potential Vorticity Vertical Scale Vertical Shearing Boussinesq Equation Mahalov, A. aut Nicolaenko, B. aut Enthalten in Theoretical and computational fluid dynamics Springer-Verlag, 1989 11(1998), 3-4 vom: Juni, Seite 215-235 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:11 year:1998 number:3-4 month:06 pages:215-235 https://doi.org/10.1007/s001620050090 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 AR 11 1998 3-4 06 215-235 |
language |
English |
source |
Enthalten in Theoretical and computational fluid dynamics 11(1998), 3-4 vom: Juni, Seite 215-235 volume:11 year:1998 number:3-4 month:06 pages:215-235 |
sourceStr |
Enthalten in Theoretical and computational fluid dynamics 11(1998), 3-4 vom: Juni, Seite 215-235 volume:11 year:1998 number:3-4 month:06 pages:215-235 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Vorticity Potential Vorticity Vertical Scale Vertical Shearing Boussinesq Equation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Theoretical and computational fluid dynamics |
authorswithroles_txt_mv |
Babin, A. @@aut@@ Mahalov, A. @@aut@@ Nicolaenko, B. @@aut@@ |
publishDateDaySort_date |
1998-06-01T00:00:00Z |
hierarchy_top_id |
130799521 |
dewey-sort |
3530 |
id |
OLC2071160517 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071160517</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401070734.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s001620050090</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071160517</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s001620050090-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Babin, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal wind imbalance) are analyzed. We describe classes of nonlinear anisotropic ageostrophic baroclinic waves which are generated by the strong nonlinear interactions between the quasi-geostrophic modes and inertio-gravity waves. In the asymptotic regime of strong stratification and weak rotation we show how switching on weak rotation triggers frontogenesis. The mechanism of the front formation is contraction in the horizontal dimension balanced by vertical shearing through coupling of large horizontal and small vertical scales by weak rotation. Vertical slanting of these fronts is proportional to $ μ^{−1/2} $ where μ is the ratio of the Coriolis and Brunt–Väisälä parameters. These fronts select slow baroclinic waves through nonlinear adjustment of the horizontal scale to the vertical scale by weak rotation, and are the envelope of inertio-gravity waves. Mathematically, this is generated by asymptotic hyperbolic systems describing the strong nonlinear interactions between waves and potential vorticity dynamics. This frontogenesis yields vertical “gluing” of pancake dynamics, in contrast to the independent dynamics of horizontal layers in strongly stratified turbulence without rotation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vorticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential Vorticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical Scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical Shearing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boussinesq Equation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahalov, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nicolaenko, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and computational fluid dynamics</subfield><subfield code="d">Springer-Verlag, 1989</subfield><subfield code="g">11(1998), 3-4 vom: Juni, Seite 215-235</subfield><subfield code="w">(DE-627)130799521</subfield><subfield code="w">(DE-600)1007949-X</subfield><subfield code="w">(DE-576)023042370</subfield><subfield code="x">0935-4964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:215-235</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s001620050090</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">1998</subfield><subfield code="e">3-4</subfield><subfield code="c">06</subfield><subfield code="h">215-235</subfield></datafield></record></collection>
|
author |
Babin, A. |
spellingShingle |
Babin, A. ddc 530 ddc 510 misc Vorticity misc Potential Vorticity misc Vertical Scale misc Vertical Shearing misc Boussinesq Equation On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics |
authorStr |
Babin, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130799521 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0935-4964 |
topic_title |
530 620 VZ 510 530 VZ On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics Vorticity Potential Vorticity Vertical Scale Vertical Shearing Boussinesq Equation |
topic |
ddc 530 ddc 510 misc Vorticity misc Potential Vorticity misc Vertical Scale misc Vertical Shearing misc Boussinesq Equation |
topic_unstemmed |
ddc 530 ddc 510 misc Vorticity misc Potential Vorticity misc Vertical Scale misc Vertical Shearing misc Boussinesq Equation |
topic_browse |
ddc 530 ddc 510 misc Vorticity misc Potential Vorticity misc Vertical Scale misc Vertical Shearing misc Boussinesq Equation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical and computational fluid dynamics |
hierarchy_parent_id |
130799521 |
dewey-tens |
530 - Physics 620 - Engineering 510 - Mathematics |
hierarchy_top_title |
Theoretical and computational fluid dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 |
title |
On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics |
ctrlnum |
(DE-627)OLC2071160517 (DE-He213)s001620050090-p |
title_full |
On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics |
author_sort |
Babin, A. |
journal |
Theoretical and computational fluid dynamics |
journalStr |
Theoretical and computational fluid dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
1998 |
contenttype_str_mv |
txt |
container_start_page |
215 |
author_browse |
Babin, A. Mahalov, A. Nicolaenko, B. |
container_volume |
11 |
class |
530 620 VZ 510 530 VZ |
format_se |
Aufsätze |
author-letter |
Babin, A. |
doi_str_mv |
10.1007/s001620050090 |
dewey-full |
530 620 510 |
title_sort |
on nonlinear baroclinic waves and adjustment of pancake dynamics |
title_auth |
On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics |
abstract |
Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal wind imbalance) are analyzed. We describe classes of nonlinear anisotropic ageostrophic baroclinic waves which are generated by the strong nonlinear interactions between the quasi-geostrophic modes and inertio-gravity waves. In the asymptotic regime of strong stratification and weak rotation we show how switching on weak rotation triggers frontogenesis. The mechanism of the front formation is contraction in the horizontal dimension balanced by vertical shearing through coupling of large horizontal and small vertical scales by weak rotation. Vertical slanting of these fronts is proportional to $ μ^{−1/2} $ where μ is the ratio of the Coriolis and Brunt–Väisälä parameters. These fronts select slow baroclinic waves through nonlinear adjustment of the horizontal scale to the vertical scale by weak rotation, and are the envelope of inertio-gravity waves. Mathematically, this is generated by asymptotic hyperbolic systems describing the strong nonlinear interactions between waves and potential vorticity dynamics. This frontogenesis yields vertical “gluing” of pancake dynamics, in contrast to the independent dynamics of horizontal layers in strongly stratified turbulence without rotation. © Springer-Verlag Berlin Heidelberg 1998 |
abstractGer |
Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal wind imbalance) are analyzed. We describe classes of nonlinear anisotropic ageostrophic baroclinic waves which are generated by the strong nonlinear interactions between the quasi-geostrophic modes and inertio-gravity waves. In the asymptotic regime of strong stratification and weak rotation we show how switching on weak rotation triggers frontogenesis. The mechanism of the front formation is contraction in the horizontal dimension balanced by vertical shearing through coupling of large horizontal and small vertical scales by weak rotation. Vertical slanting of these fronts is proportional to $ μ^{−1/2} $ where μ is the ratio of the Coriolis and Brunt–Väisälä parameters. These fronts select slow baroclinic waves through nonlinear adjustment of the horizontal scale to the vertical scale by weak rotation, and are the envelope of inertio-gravity waves. Mathematically, this is generated by asymptotic hyperbolic systems describing the strong nonlinear interactions between waves and potential vorticity dynamics. This frontogenesis yields vertical “gluing” of pancake dynamics, in contrast to the independent dynamics of horizontal layers in strongly stratified turbulence without rotation. © Springer-Verlag Berlin Heidelberg 1998 |
abstract_unstemmed |
Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal wind imbalance) are analyzed. We describe classes of nonlinear anisotropic ageostrophic baroclinic waves which are generated by the strong nonlinear interactions between the quasi-geostrophic modes and inertio-gravity waves. In the asymptotic regime of strong stratification and weak rotation we show how switching on weak rotation triggers frontogenesis. The mechanism of the front formation is contraction in the horizontal dimension balanced by vertical shearing through coupling of large horizontal and small vertical scales by weak rotation. Vertical slanting of these fronts is proportional to $ μ^{−1/2} $ where μ is the ratio of the Coriolis and Brunt–Väisälä parameters. These fronts select slow baroclinic waves through nonlinear adjustment of the horizontal scale to the vertical scale by weak rotation, and are the envelope of inertio-gravity waves. Mathematically, this is generated by asymptotic hyperbolic systems describing the strong nonlinear interactions between waves and potential vorticity dynamics. This frontogenesis yields vertical “gluing” of pancake dynamics, in contrast to the independent dynamics of horizontal layers in strongly stratified turbulence without rotation. © Springer-Verlag Berlin Heidelberg 1998 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 |
container_issue |
3-4 |
title_short |
On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics |
url |
https://doi.org/10.1007/s001620050090 |
remote_bool |
false |
author2 |
Mahalov, A. Nicolaenko, B. |
author2Str |
Mahalov, A. Nicolaenko, B. |
ppnlink |
130799521 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s001620050090 |
up_date |
2024-07-04T03:05:38.853Z |
_version_ |
1803616087039803392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071160517</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401070734.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s001620050090</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071160517</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s001620050090-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Babin, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Nonlinear Baroclinic Waves and Adjustment of Pancake Dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: Three-dimensional nonhydrostatic Euler–Boussinesq equations are studied for Bu=O(1) flows as well as in the asymptotic regime of strong stratification and weak rotation. Reduced prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure/thermal wind imbalance) are analyzed. We describe classes of nonlinear anisotropic ageostrophic baroclinic waves which are generated by the strong nonlinear interactions between the quasi-geostrophic modes and inertio-gravity waves. In the asymptotic regime of strong stratification and weak rotation we show how switching on weak rotation triggers frontogenesis. The mechanism of the front formation is contraction in the horizontal dimension balanced by vertical shearing through coupling of large horizontal and small vertical scales by weak rotation. Vertical slanting of these fronts is proportional to $ μ^{−1/2} $ where μ is the ratio of the Coriolis and Brunt–Väisälä parameters. These fronts select slow baroclinic waves through nonlinear adjustment of the horizontal scale to the vertical scale by weak rotation, and are the envelope of inertio-gravity waves. Mathematically, this is generated by asymptotic hyperbolic systems describing the strong nonlinear interactions between waves and potential vorticity dynamics. This frontogenesis yields vertical “gluing” of pancake dynamics, in contrast to the independent dynamics of horizontal layers in strongly stratified turbulence without rotation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vorticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential Vorticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical Scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical Shearing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boussinesq Equation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahalov, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nicolaenko, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and computational fluid dynamics</subfield><subfield code="d">Springer-Verlag, 1989</subfield><subfield code="g">11(1998), 3-4 vom: Juni, Seite 215-235</subfield><subfield code="w">(DE-627)130799521</subfield><subfield code="w">(DE-600)1007949-X</subfield><subfield code="w">(DE-576)023042370</subfield><subfield code="x">0935-4964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:215-235</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s001620050090</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">1998</subfield><subfield code="e">3-4</subfield><subfield code="c">06</subfield><subfield code="h">215-235</subfield></datafield></record></collection>
|
score |
7.402011 |