A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data
Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a period...
Ausführliche Beschreibung
Autor*in: |
Jones, D.A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 1999 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and computational fluid dynamics - Springer-Verlag, 1989, 13(1999), 2 vom: Juni, Seite 143-159 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:1999 ; number:2 ; month:06 ; pages:143-159 |
Links: |
---|
DOI / URN: |
10.1007/s001620050012 |
---|
Katalog-ID: |
OLC2071160754 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071160754 | ||
003 | DE-627 | ||
005 | 20230401070736.0 | ||
007 | tu | ||
008 | 200820s1999 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s001620050012 |2 doi | |
035 | |a (DE-627)OLC2071160754 | ||
035 | |a (DE-He213)s001620050012-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 510 |a 530 |q VZ |
100 | 1 | |a Jones, D.A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 1999 | ||
520 | |a Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations. | ||
650 | 4 | |a Initial Data | |
650 | 4 | |a Computational Cost | |
650 | 4 | |a Numerical Approximation | |
650 | 4 | |a General Operator | |
650 | 4 | |a Asymptotic Limit | |
700 | 1 | |a Mahalov, A. |4 aut | |
700 | 1 | |a Nicolaenko, B. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and computational fluid dynamics |d Springer-Verlag, 1989 |g 13(1999), 2 vom: Juni, Seite 143-159 |w (DE-627)130799521 |w (DE-600)1007949-X |w (DE-576)023042370 |x 0935-4964 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:1999 |g number:2 |g month:06 |g pages:143-159 |
856 | 4 | 1 | |u https://doi.org/10.1007/s001620050012 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2354 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4302 | ||
912 | |a GBV_ILN_4307 | ||
951 | |a AR | ||
952 | |d 13 |j 1999 |e 2 |c 06 |h 143-159 |
author_variant |
d j dj a m am b n bn |
---|---|
matchkey_str |
article:09354964:1999----::nmrcltdoaoeaosltigehdorttnfosihag |
hierarchy_sort_str |
1999 |
publishDate |
1999 |
allfields |
10.1007/s001620050012 doi (DE-627)OLC2071160754 (DE-He213)s001620050012-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Jones, D.A. verfasserin aut A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations. Initial Data Computational Cost Numerical Approximation General Operator Asymptotic Limit Mahalov, A. aut Nicolaenko, B. aut Enthalten in Theoretical and computational fluid dynamics Springer-Verlag, 1989 13(1999), 2 vom: Juni, Seite 143-159 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:13 year:1999 number:2 month:06 pages:143-159 https://doi.org/10.1007/s001620050012 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2354 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 AR 13 1999 2 06 143-159 |
spelling |
10.1007/s001620050012 doi (DE-627)OLC2071160754 (DE-He213)s001620050012-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Jones, D.A. verfasserin aut A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations. Initial Data Computational Cost Numerical Approximation General Operator Asymptotic Limit Mahalov, A. aut Nicolaenko, B. aut Enthalten in Theoretical and computational fluid dynamics Springer-Verlag, 1989 13(1999), 2 vom: Juni, Seite 143-159 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:13 year:1999 number:2 month:06 pages:143-159 https://doi.org/10.1007/s001620050012 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2354 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 AR 13 1999 2 06 143-159 |
allfields_unstemmed |
10.1007/s001620050012 doi (DE-627)OLC2071160754 (DE-He213)s001620050012-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Jones, D.A. verfasserin aut A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations. Initial Data Computational Cost Numerical Approximation General Operator Asymptotic Limit Mahalov, A. aut Nicolaenko, B. aut Enthalten in Theoretical and computational fluid dynamics Springer-Verlag, 1989 13(1999), 2 vom: Juni, Seite 143-159 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:13 year:1999 number:2 month:06 pages:143-159 https://doi.org/10.1007/s001620050012 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2354 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 AR 13 1999 2 06 143-159 |
allfieldsGer |
10.1007/s001620050012 doi (DE-627)OLC2071160754 (DE-He213)s001620050012-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Jones, D.A. verfasserin aut A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations. Initial Data Computational Cost Numerical Approximation General Operator Asymptotic Limit Mahalov, A. aut Nicolaenko, B. aut Enthalten in Theoretical and computational fluid dynamics Springer-Verlag, 1989 13(1999), 2 vom: Juni, Seite 143-159 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:13 year:1999 number:2 month:06 pages:143-159 https://doi.org/10.1007/s001620050012 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2354 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 AR 13 1999 2 06 143-159 |
allfieldsSound |
10.1007/s001620050012 doi (DE-627)OLC2071160754 (DE-He213)s001620050012-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Jones, D.A. verfasserin aut A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations. Initial Data Computational Cost Numerical Approximation General Operator Asymptotic Limit Mahalov, A. aut Nicolaenko, B. aut Enthalten in Theoretical and computational fluid dynamics Springer-Verlag, 1989 13(1999), 2 vom: Juni, Seite 143-159 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:13 year:1999 number:2 month:06 pages:143-159 https://doi.org/10.1007/s001620050012 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2354 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 AR 13 1999 2 06 143-159 |
language |
English |
source |
Enthalten in Theoretical and computational fluid dynamics 13(1999), 2 vom: Juni, Seite 143-159 volume:13 year:1999 number:2 month:06 pages:143-159 |
sourceStr |
Enthalten in Theoretical and computational fluid dynamics 13(1999), 2 vom: Juni, Seite 143-159 volume:13 year:1999 number:2 month:06 pages:143-159 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Initial Data Computational Cost Numerical Approximation General Operator Asymptotic Limit |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Theoretical and computational fluid dynamics |
authorswithroles_txt_mv |
Jones, D.A. @@aut@@ Mahalov, A. @@aut@@ Nicolaenko, B. @@aut@@ |
publishDateDaySort_date |
1999-06-01T00:00:00Z |
hierarchy_top_id |
130799521 |
dewey-sort |
3530 |
id |
OLC2071160754 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071160754</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401070736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s001620050012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071160754</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s001620050012-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jones, D.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Cost</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General Operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic Limit</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahalov, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nicolaenko, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and computational fluid dynamics</subfield><subfield code="d">Springer-Verlag, 1989</subfield><subfield code="g">13(1999), 2 vom: Juni, Seite 143-159</subfield><subfield code="w">(DE-627)130799521</subfield><subfield code="w">(DE-600)1007949-X</subfield><subfield code="w">(DE-576)023042370</subfield><subfield code="x">0935-4964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:143-159</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s001620050012</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2354</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">1999</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">143-159</subfield></datafield></record></collection>
|
author |
Jones, D.A. |
spellingShingle |
Jones, D.A. ddc 530 ddc 510 misc Initial Data misc Computational Cost misc Numerical Approximation misc General Operator misc Asymptotic Limit A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data |
authorStr |
Jones, D.A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130799521 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0935-4964 |
topic_title |
530 620 VZ 510 530 VZ A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data Initial Data Computational Cost Numerical Approximation General Operator Asymptotic Limit |
topic |
ddc 530 ddc 510 misc Initial Data misc Computational Cost misc Numerical Approximation misc General Operator misc Asymptotic Limit |
topic_unstemmed |
ddc 530 ddc 510 misc Initial Data misc Computational Cost misc Numerical Approximation misc General Operator misc Asymptotic Limit |
topic_browse |
ddc 530 ddc 510 misc Initial Data misc Computational Cost misc Numerical Approximation misc General Operator misc Asymptotic Limit |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical and computational fluid dynamics |
hierarchy_parent_id |
130799521 |
dewey-tens |
530 - Physics 620 - Engineering 510 - Mathematics |
hierarchy_top_title |
Theoretical and computational fluid dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 |
title |
A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data |
ctrlnum |
(DE-627)OLC2071160754 (DE-He213)s001620050012-p |
title_full |
A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data |
author_sort |
Jones, D.A. |
journal |
Theoretical and computational fluid dynamics |
journalStr |
Theoretical and computational fluid dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
143 |
author_browse |
Jones, D.A. Mahalov, A. Nicolaenko, B. |
container_volume |
13 |
class |
530 620 VZ 510 530 VZ |
format_se |
Aufsätze |
author-letter |
Jones, D.A. |
doi_str_mv |
10.1007/s001620050012 |
dewey-full |
530 620 510 |
title_sort |
a numerical study of an operator splitting method for rotating flows with large ageostrophic initial data |
title_auth |
A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data |
abstract |
Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations. © Springer-Verlag Berlin Heidelberg 1999 |
abstractGer |
Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations. © Springer-Verlag Berlin Heidelberg 1999 |
abstract_unstemmed |
Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations. © Springer-Verlag Berlin Heidelberg 1999 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2050 GBV_ILN_2354 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4307 |
container_issue |
2 |
title_short |
A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data |
url |
https://doi.org/10.1007/s001620050012 |
remote_bool |
false |
author2 |
Mahalov, A. Nicolaenko, B. |
author2Str |
Mahalov, A. Nicolaenko, B. |
ppnlink |
130799521 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s001620050012 |
up_date |
2024-07-04T03:05:40.804Z |
_version_ |
1803616089071943680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071160754</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401070736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s001620050012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071160754</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s001620050012-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jones, D.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Cost</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General Operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic Limit</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahalov, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nicolaenko, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and computational fluid dynamics</subfield><subfield code="d">Springer-Verlag, 1989</subfield><subfield code="g">13(1999), 2 vom: Juni, Seite 143-159</subfield><subfield code="w">(DE-627)130799521</subfield><subfield code="w">(DE-600)1007949-X</subfield><subfield code="w">(DE-576)023042370</subfield><subfield code="x">0935-4964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:143-159</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s001620050012</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2354</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">1999</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">143-159</subfield></datafield></record></collection>
|
score |
7.401636 |