On the excitation of Görtler vortices by distributed roughness elements
Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary ins...
Ausführliche Beschreibung
Autor*in: |
Sescu, Adrian [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and computational fluid dynamics - Springer Berlin Heidelberg, 1989, 29(2015), 1-2 vom: 29. Jan., Seite 67-92 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2015 ; number:1-2 ; day:29 ; month:01 ; pages:67-92 |
Links: |
---|
DOI / URN: |
10.1007/s00162-015-0340-2 |
---|
Katalog-ID: |
OLC2071165667 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071165667 | ||
003 | DE-627 | ||
005 | 20230401070842.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00162-015-0340-2 |2 doi | |
035 | |a (DE-627)OLC2071165667 | ||
035 | |a (DE-He213)s00162-015-0340-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 510 |a 530 |q VZ |
100 | 1 | |a Sescu, Adrian |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the excitation of Görtler vortices by distributed roughness elements |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2015 | ||
520 | |a Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary instabilities and ultimately to transition. In this study, the growth of Görtler vortices excited by distributed roughness elements is analyzed using the solution to the nonlinear boundary region equations with upstream boundary conditions derived previously via an asymptotic analysis applied in the vicinity of the roughness elements. Generalized Rayleigh pressure equation derived based on the assumption that the baseline flow is a function of the transverse coordinates only is used to determine the growth rates associated with the secondary instabilities. Within the analysis, the roughness shape, height and diameter as well as the spanwise separation between the roughness elements are varied in the linear regime, while keeping the same Görtler number. It is found that bell-shaped distributed roughness elements are more likely to excite the Görtler instabilities than sharp-edge-type (e.g., cylindrical) roughness elements, and by increasing the roughness diameter, the strength of Görtler vortices associated with the bell-shaped roughness elements increases as expected, but the strength of Görtler vortices associated with cylindrical-shaped roughness elements decreases. | ||
650 | 4 | |a Boundary layers | |
650 | 4 | |a Gortler vortices | |
650 | 4 | |a Receptivity | |
700 | 1 | |a Thompson, David |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and computational fluid dynamics |d Springer Berlin Heidelberg, 1989 |g 29(2015), 1-2 vom: 29. Jan., Seite 67-92 |w (DE-627)130799521 |w (DE-600)1007949-X |w (DE-576)023042370 |x 0935-4964 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2015 |g number:1-2 |g day:29 |g month:01 |g pages:67-92 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00162-015-0340-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 29 |j 2015 |e 1-2 |b 29 |c 01 |h 67-92 |
author_variant |
a s as d t dt |
---|---|
matchkey_str |
article:09354964:2015----::nhecttoogtevriebdsrbtd |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00162-015-0340-2 doi (DE-627)OLC2071165667 (DE-He213)s00162-015-0340-2-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Sescu, Adrian verfasserin aut On the excitation of Görtler vortices by distributed roughness elements 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary instabilities and ultimately to transition. In this study, the growth of Görtler vortices excited by distributed roughness elements is analyzed using the solution to the nonlinear boundary region equations with upstream boundary conditions derived previously via an asymptotic analysis applied in the vicinity of the roughness elements. Generalized Rayleigh pressure equation derived based on the assumption that the baseline flow is a function of the transverse coordinates only is used to determine the growth rates associated with the secondary instabilities. Within the analysis, the roughness shape, height and diameter as well as the spanwise separation between the roughness elements are varied in the linear regime, while keeping the same Görtler number. It is found that bell-shaped distributed roughness elements are more likely to excite the Görtler instabilities than sharp-edge-type (e.g., cylindrical) roughness elements, and by increasing the roughness diameter, the strength of Görtler vortices associated with the bell-shaped roughness elements increases as expected, but the strength of Görtler vortices associated with cylindrical-shaped roughness elements decreases. Boundary layers Gortler vortices Receptivity Thompson, David aut Enthalten in Theoretical and computational fluid dynamics Springer Berlin Heidelberg, 1989 29(2015), 1-2 vom: 29. Jan., Seite 67-92 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:29 year:2015 number:1-2 day:29 month:01 pages:67-92 https://doi.org/10.1007/s00162-015-0340-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 29 2015 1-2 29 01 67-92 |
spelling |
10.1007/s00162-015-0340-2 doi (DE-627)OLC2071165667 (DE-He213)s00162-015-0340-2-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Sescu, Adrian verfasserin aut On the excitation of Görtler vortices by distributed roughness elements 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary instabilities and ultimately to transition. In this study, the growth of Görtler vortices excited by distributed roughness elements is analyzed using the solution to the nonlinear boundary region equations with upstream boundary conditions derived previously via an asymptotic analysis applied in the vicinity of the roughness elements. Generalized Rayleigh pressure equation derived based on the assumption that the baseline flow is a function of the transverse coordinates only is used to determine the growth rates associated with the secondary instabilities. Within the analysis, the roughness shape, height and diameter as well as the spanwise separation between the roughness elements are varied in the linear regime, while keeping the same Görtler number. It is found that bell-shaped distributed roughness elements are more likely to excite the Görtler instabilities than sharp-edge-type (e.g., cylindrical) roughness elements, and by increasing the roughness diameter, the strength of Görtler vortices associated with the bell-shaped roughness elements increases as expected, but the strength of Görtler vortices associated with cylindrical-shaped roughness elements decreases. Boundary layers Gortler vortices Receptivity Thompson, David aut Enthalten in Theoretical and computational fluid dynamics Springer Berlin Heidelberg, 1989 29(2015), 1-2 vom: 29. Jan., Seite 67-92 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:29 year:2015 number:1-2 day:29 month:01 pages:67-92 https://doi.org/10.1007/s00162-015-0340-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 29 2015 1-2 29 01 67-92 |
allfields_unstemmed |
10.1007/s00162-015-0340-2 doi (DE-627)OLC2071165667 (DE-He213)s00162-015-0340-2-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Sescu, Adrian verfasserin aut On the excitation of Görtler vortices by distributed roughness elements 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary instabilities and ultimately to transition. In this study, the growth of Görtler vortices excited by distributed roughness elements is analyzed using the solution to the nonlinear boundary region equations with upstream boundary conditions derived previously via an asymptotic analysis applied in the vicinity of the roughness elements. Generalized Rayleigh pressure equation derived based on the assumption that the baseline flow is a function of the transverse coordinates only is used to determine the growth rates associated with the secondary instabilities. Within the analysis, the roughness shape, height and diameter as well as the spanwise separation between the roughness elements are varied in the linear regime, while keeping the same Görtler number. It is found that bell-shaped distributed roughness elements are more likely to excite the Görtler instabilities than sharp-edge-type (e.g., cylindrical) roughness elements, and by increasing the roughness diameter, the strength of Görtler vortices associated with the bell-shaped roughness elements increases as expected, but the strength of Görtler vortices associated with cylindrical-shaped roughness elements decreases. Boundary layers Gortler vortices Receptivity Thompson, David aut Enthalten in Theoretical and computational fluid dynamics Springer Berlin Heidelberg, 1989 29(2015), 1-2 vom: 29. Jan., Seite 67-92 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:29 year:2015 number:1-2 day:29 month:01 pages:67-92 https://doi.org/10.1007/s00162-015-0340-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 29 2015 1-2 29 01 67-92 |
allfieldsGer |
10.1007/s00162-015-0340-2 doi (DE-627)OLC2071165667 (DE-He213)s00162-015-0340-2-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Sescu, Adrian verfasserin aut On the excitation of Görtler vortices by distributed roughness elements 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary instabilities and ultimately to transition. In this study, the growth of Görtler vortices excited by distributed roughness elements is analyzed using the solution to the nonlinear boundary region equations with upstream boundary conditions derived previously via an asymptotic analysis applied in the vicinity of the roughness elements. Generalized Rayleigh pressure equation derived based on the assumption that the baseline flow is a function of the transverse coordinates only is used to determine the growth rates associated with the secondary instabilities. Within the analysis, the roughness shape, height and diameter as well as the spanwise separation between the roughness elements are varied in the linear regime, while keeping the same Görtler number. It is found that bell-shaped distributed roughness elements are more likely to excite the Görtler instabilities than sharp-edge-type (e.g., cylindrical) roughness elements, and by increasing the roughness diameter, the strength of Görtler vortices associated with the bell-shaped roughness elements increases as expected, but the strength of Görtler vortices associated with cylindrical-shaped roughness elements decreases. Boundary layers Gortler vortices Receptivity Thompson, David aut Enthalten in Theoretical and computational fluid dynamics Springer Berlin Heidelberg, 1989 29(2015), 1-2 vom: 29. Jan., Seite 67-92 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:29 year:2015 number:1-2 day:29 month:01 pages:67-92 https://doi.org/10.1007/s00162-015-0340-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 29 2015 1-2 29 01 67-92 |
allfieldsSound |
10.1007/s00162-015-0340-2 doi (DE-627)OLC2071165667 (DE-He213)s00162-015-0340-2-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Sescu, Adrian verfasserin aut On the excitation of Görtler vortices by distributed roughness elements 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary instabilities and ultimately to transition. In this study, the growth of Görtler vortices excited by distributed roughness elements is analyzed using the solution to the nonlinear boundary region equations with upstream boundary conditions derived previously via an asymptotic analysis applied in the vicinity of the roughness elements. Generalized Rayleigh pressure equation derived based on the assumption that the baseline flow is a function of the transverse coordinates only is used to determine the growth rates associated with the secondary instabilities. Within the analysis, the roughness shape, height and diameter as well as the spanwise separation between the roughness elements are varied in the linear regime, while keeping the same Görtler number. It is found that bell-shaped distributed roughness elements are more likely to excite the Görtler instabilities than sharp-edge-type (e.g., cylindrical) roughness elements, and by increasing the roughness diameter, the strength of Görtler vortices associated with the bell-shaped roughness elements increases as expected, but the strength of Görtler vortices associated with cylindrical-shaped roughness elements decreases. Boundary layers Gortler vortices Receptivity Thompson, David aut Enthalten in Theoretical and computational fluid dynamics Springer Berlin Heidelberg, 1989 29(2015), 1-2 vom: 29. Jan., Seite 67-92 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:29 year:2015 number:1-2 day:29 month:01 pages:67-92 https://doi.org/10.1007/s00162-015-0340-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 29 2015 1-2 29 01 67-92 |
language |
English |
source |
Enthalten in Theoretical and computational fluid dynamics 29(2015), 1-2 vom: 29. Jan., Seite 67-92 volume:29 year:2015 number:1-2 day:29 month:01 pages:67-92 |
sourceStr |
Enthalten in Theoretical and computational fluid dynamics 29(2015), 1-2 vom: 29. Jan., Seite 67-92 volume:29 year:2015 number:1-2 day:29 month:01 pages:67-92 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Boundary layers Gortler vortices Receptivity |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Theoretical and computational fluid dynamics |
authorswithroles_txt_mv |
Sescu, Adrian @@aut@@ Thompson, David @@aut@@ |
publishDateDaySort_date |
2015-01-29T00:00:00Z |
hierarchy_top_id |
130799521 |
dewey-sort |
3530 |
id |
OLC2071165667 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071165667</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401070842.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00162-015-0340-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071165667</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00162-015-0340-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sescu, Adrian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the excitation of Görtler vortices by distributed roughness elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary instabilities and ultimately to transition. In this study, the growth of Görtler vortices excited by distributed roughness elements is analyzed using the solution to the nonlinear boundary region equations with upstream boundary conditions derived previously via an asymptotic analysis applied in the vicinity of the roughness elements. Generalized Rayleigh pressure equation derived based on the assumption that the baseline flow is a function of the transverse coordinates only is used to determine the growth rates associated with the secondary instabilities. Within the analysis, the roughness shape, height and diameter as well as the spanwise separation between the roughness elements are varied in the linear regime, while keeping the same Görtler number. It is found that bell-shaped distributed roughness elements are more likely to excite the Görtler instabilities than sharp-edge-type (e.g., cylindrical) roughness elements, and by increasing the roughness diameter, the strength of Görtler vortices associated with the bell-shaped roughness elements increases as expected, but the strength of Görtler vortices associated with cylindrical-shaped roughness elements decreases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary layers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gortler vortices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receptivity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thompson, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and computational fluid dynamics</subfield><subfield code="d">Springer Berlin Heidelberg, 1989</subfield><subfield code="g">29(2015), 1-2 vom: 29. Jan., Seite 67-92</subfield><subfield code="w">(DE-627)130799521</subfield><subfield code="w">(DE-600)1007949-X</subfield><subfield code="w">(DE-576)023042370</subfield><subfield code="x">0935-4964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:67-92</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00162-015-0340-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2015</subfield><subfield code="e">1-2</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">67-92</subfield></datafield></record></collection>
|
author |
Sescu, Adrian |
spellingShingle |
Sescu, Adrian ddc 530 ddc 510 misc Boundary layers misc Gortler vortices misc Receptivity On the excitation of Görtler vortices by distributed roughness elements |
authorStr |
Sescu, Adrian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130799521 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0935-4964 |
topic_title |
530 620 VZ 510 530 VZ On the excitation of Görtler vortices by distributed roughness elements Boundary layers Gortler vortices Receptivity |
topic |
ddc 530 ddc 510 misc Boundary layers misc Gortler vortices misc Receptivity |
topic_unstemmed |
ddc 530 ddc 510 misc Boundary layers misc Gortler vortices misc Receptivity |
topic_browse |
ddc 530 ddc 510 misc Boundary layers misc Gortler vortices misc Receptivity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical and computational fluid dynamics |
hierarchy_parent_id |
130799521 |
dewey-tens |
530 - Physics 620 - Engineering 510 - Mathematics |
hierarchy_top_title |
Theoretical and computational fluid dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 |
title |
On the excitation of Görtler vortices by distributed roughness elements |
ctrlnum |
(DE-627)OLC2071165667 (DE-He213)s00162-015-0340-2-p |
title_full |
On the excitation of Görtler vortices by distributed roughness elements |
author_sort |
Sescu, Adrian |
journal |
Theoretical and computational fluid dynamics |
journalStr |
Theoretical and computational fluid dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
67 |
author_browse |
Sescu, Adrian Thompson, David |
container_volume |
29 |
class |
530 620 VZ 510 530 VZ |
format_se |
Aufsätze |
author-letter |
Sescu, Adrian |
doi_str_mv |
10.1007/s00162-015-0340-2 |
dewey-full |
530 620 510 |
title_sort |
on the excitation of görtler vortices by distributed roughness elements |
title_auth |
On the excitation of Görtler vortices by distributed roughness elements |
abstract |
Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary instabilities and ultimately to transition. In this study, the growth of Görtler vortices excited by distributed roughness elements is analyzed using the solution to the nonlinear boundary region equations with upstream boundary conditions derived previously via an asymptotic analysis applied in the vicinity of the roughness elements. Generalized Rayleigh pressure equation derived based on the assumption that the baseline flow is a function of the transverse coordinates only is used to determine the growth rates associated with the secondary instabilities. Within the analysis, the roughness shape, height and diameter as well as the spanwise separation between the roughness elements are varied in the linear regime, while keeping the same Görtler number. It is found that bell-shaped distributed roughness elements are more likely to excite the Görtler instabilities than sharp-edge-type (e.g., cylindrical) roughness elements, and by increasing the roughness diameter, the strength of Görtler vortices associated with the bell-shaped roughness elements increases as expected, but the strength of Görtler vortices associated with cylindrical-shaped roughness elements decreases. © Springer-Verlag Berlin Heidelberg 2015 |
abstractGer |
Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary instabilities and ultimately to transition. In this study, the growth of Görtler vortices excited by distributed roughness elements is analyzed using the solution to the nonlinear boundary region equations with upstream boundary conditions derived previously via an asymptotic analysis applied in the vicinity of the roughness elements. Generalized Rayleigh pressure equation derived based on the assumption that the baseline flow is a function of the transverse coordinates only is used to determine the growth rates associated with the secondary instabilities. Within the analysis, the roughness shape, height and diameter as well as the spanwise separation between the roughness elements are varied in the linear regime, while keeping the same Görtler number. It is found that bell-shaped distributed roughness elements are more likely to excite the Görtler instabilities than sharp-edge-type (e.g., cylindrical) roughness elements, and by increasing the roughness diameter, the strength of Görtler vortices associated with the bell-shaped roughness elements increases as expected, but the strength of Görtler vortices associated with cylindrical-shaped roughness elements decreases. © Springer-Verlag Berlin Heidelberg 2015 |
abstract_unstemmed |
Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary instabilities and ultimately to transition. In this study, the growth of Görtler vortices excited by distributed roughness elements is analyzed using the solution to the nonlinear boundary region equations with upstream boundary conditions derived previously via an asymptotic analysis applied in the vicinity of the roughness elements. Generalized Rayleigh pressure equation derived based on the assumption that the baseline flow is a function of the transverse coordinates only is used to determine the growth rates associated with the secondary instabilities. Within the analysis, the roughness shape, height and diameter as well as the spanwise separation between the roughness elements are varied in the linear regime, while keeping the same Görtler number. It is found that bell-shaped distributed roughness elements are more likely to excite the Görtler instabilities than sharp-edge-type (e.g., cylindrical) roughness elements, and by increasing the roughness diameter, the strength of Görtler vortices associated with the bell-shaped roughness elements increases as expected, but the strength of Görtler vortices associated with cylindrical-shaped roughness elements decreases. © Springer-Verlag Berlin Heidelberg 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 |
container_issue |
1-2 |
title_short |
On the excitation of Görtler vortices by distributed roughness elements |
url |
https://doi.org/10.1007/s00162-015-0340-2 |
remote_bool |
false |
author2 |
Thompson, David |
author2Str |
Thompson, David |
ppnlink |
130799521 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00162-015-0340-2 |
up_date |
2024-07-04T03:06:20.471Z |
_version_ |
1803616130679439360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071165667</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401070842.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00162-015-0340-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071165667</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00162-015-0340-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sescu, Adrian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the excitation of Görtler vortices by distributed roughness elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Görtler vortices evolve in boundary layers over concave surfaces as a result of the imbalance between centrifugal effects and radial pressure gradients. Depending on various geometrical and flow conditions, these vortices can significantly distort the baseline flow and lead to secondary instabilities and ultimately to transition. In this study, the growth of Görtler vortices excited by distributed roughness elements is analyzed using the solution to the nonlinear boundary region equations with upstream boundary conditions derived previously via an asymptotic analysis applied in the vicinity of the roughness elements. Generalized Rayleigh pressure equation derived based on the assumption that the baseline flow is a function of the transverse coordinates only is used to determine the growth rates associated with the secondary instabilities. Within the analysis, the roughness shape, height and diameter as well as the spanwise separation between the roughness elements are varied in the linear regime, while keeping the same Görtler number. It is found that bell-shaped distributed roughness elements are more likely to excite the Görtler instabilities than sharp-edge-type (e.g., cylindrical) roughness elements, and by increasing the roughness diameter, the strength of Görtler vortices associated with the bell-shaped roughness elements increases as expected, but the strength of Görtler vortices associated with cylindrical-shaped roughness elements decreases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary layers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gortler vortices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receptivity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thompson, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and computational fluid dynamics</subfield><subfield code="d">Springer Berlin Heidelberg, 1989</subfield><subfield code="g">29(2015), 1-2 vom: 29. Jan., Seite 67-92</subfield><subfield code="w">(DE-627)130799521</subfield><subfield code="w">(DE-600)1007949-X</subfield><subfield code="w">(DE-576)023042370</subfield><subfield code="x">0935-4964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:67-92</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00162-015-0340-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2015</subfield><subfield code="e">1-2</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">67-92</subfield></datafield></record></collection>
|
score |
7.402915 |