Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions
Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin pro...
Ausführliche Beschreibung
Autor*in: |
Gelfgat, Alexander Yu. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and computational fluid dynamics - Springer Berlin Heidelberg, 1989, 30(2016), 4 vom: 24. Feb., Seite 339-348 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2016 ; number:4 ; day:24 ; month:02 ; pages:339-348 |
Links: |
---|
DOI / URN: |
10.1007/s00162-016-0383-z |
---|
Katalog-ID: |
OLC2071166086 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071166086 | ||
003 | DE-627 | ||
005 | 20230401070848.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00162-016-0383-z |2 doi | |
035 | |a (DE-627)OLC2071166086 | ||
035 | |a (DE-He213)s00162-016-0383-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 510 |a 530 |q VZ |
100 | 1 | |a Gelfgat, Alexander Yu. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2016 | ||
520 | |a Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin–Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented. | ||
650 | 4 | |a Incompressible flow | |
650 | 4 | |a Flow visualization | |
650 | 4 | |a Staggered grid | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and computational fluid dynamics |d Springer Berlin Heidelberg, 1989 |g 30(2016), 4 vom: 24. Feb., Seite 339-348 |w (DE-627)130799521 |w (DE-600)1007949-X |w (DE-576)023042370 |x 0935-4964 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2016 |g number:4 |g day:24 |g month:02 |g pages:339-348 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00162-016-0383-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 30 |j 2016 |e 4 |b 24 |c 02 |h 339-348 |
author_variant |
a y g ay ayg |
---|---|
matchkey_str |
article:09354964:2016----::iulztootreiesoaicmrsilfosyustoiesoadvrecfep |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00162-016-0383-z doi (DE-627)OLC2071166086 (DE-He213)s00162-016-0383-z-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Gelfgat, Alexander Yu. verfasserin aut Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin–Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented. Incompressible flow Flow visualization Staggered grid Enthalten in Theoretical and computational fluid dynamics Springer Berlin Heidelberg, 1989 30(2016), 4 vom: 24. Feb., Seite 339-348 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:30 year:2016 number:4 day:24 month:02 pages:339-348 https://doi.org/10.1007/s00162-016-0383-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 30 2016 4 24 02 339-348 |
spelling |
10.1007/s00162-016-0383-z doi (DE-627)OLC2071166086 (DE-He213)s00162-016-0383-z-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Gelfgat, Alexander Yu. verfasserin aut Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin–Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented. Incompressible flow Flow visualization Staggered grid Enthalten in Theoretical and computational fluid dynamics Springer Berlin Heidelberg, 1989 30(2016), 4 vom: 24. Feb., Seite 339-348 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:30 year:2016 number:4 day:24 month:02 pages:339-348 https://doi.org/10.1007/s00162-016-0383-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 30 2016 4 24 02 339-348 |
allfields_unstemmed |
10.1007/s00162-016-0383-z doi (DE-627)OLC2071166086 (DE-He213)s00162-016-0383-z-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Gelfgat, Alexander Yu. verfasserin aut Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin–Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented. Incompressible flow Flow visualization Staggered grid Enthalten in Theoretical and computational fluid dynamics Springer Berlin Heidelberg, 1989 30(2016), 4 vom: 24. Feb., Seite 339-348 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:30 year:2016 number:4 day:24 month:02 pages:339-348 https://doi.org/10.1007/s00162-016-0383-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 30 2016 4 24 02 339-348 |
allfieldsGer |
10.1007/s00162-016-0383-z doi (DE-627)OLC2071166086 (DE-He213)s00162-016-0383-z-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Gelfgat, Alexander Yu. verfasserin aut Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin–Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented. Incompressible flow Flow visualization Staggered grid Enthalten in Theoretical and computational fluid dynamics Springer Berlin Heidelberg, 1989 30(2016), 4 vom: 24. Feb., Seite 339-348 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:30 year:2016 number:4 day:24 month:02 pages:339-348 https://doi.org/10.1007/s00162-016-0383-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 30 2016 4 24 02 339-348 |
allfieldsSound |
10.1007/s00162-016-0383-z doi (DE-627)OLC2071166086 (DE-He213)s00162-016-0383-z-p DE-627 ger DE-627 rakwb eng 530 620 VZ 510 530 VZ Gelfgat, Alexander Yu. verfasserin aut Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin–Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented. Incompressible flow Flow visualization Staggered grid Enthalten in Theoretical and computational fluid dynamics Springer Berlin Heidelberg, 1989 30(2016), 4 vom: 24. Feb., Seite 339-348 (DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 0935-4964 nnns volume:30 year:2016 number:4 day:24 month:02 pages:339-348 https://doi.org/10.1007/s00162-016-0383-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 30 2016 4 24 02 339-348 |
language |
English |
source |
Enthalten in Theoretical and computational fluid dynamics 30(2016), 4 vom: 24. Feb., Seite 339-348 volume:30 year:2016 number:4 day:24 month:02 pages:339-348 |
sourceStr |
Enthalten in Theoretical and computational fluid dynamics 30(2016), 4 vom: 24. Feb., Seite 339-348 volume:30 year:2016 number:4 day:24 month:02 pages:339-348 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Incompressible flow Flow visualization Staggered grid |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Theoretical and computational fluid dynamics |
authorswithroles_txt_mv |
Gelfgat, Alexander Yu. @@aut@@ |
publishDateDaySort_date |
2016-02-24T00:00:00Z |
hierarchy_top_id |
130799521 |
dewey-sort |
3530 |
id |
OLC2071166086 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071166086</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401070848.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00162-016-0383-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071166086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00162-016-0383-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gelfgat, Alexander Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin–Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incompressible flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staggered grid</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and computational fluid dynamics</subfield><subfield code="d">Springer Berlin Heidelberg, 1989</subfield><subfield code="g">30(2016), 4 vom: 24. Feb., Seite 339-348</subfield><subfield code="w">(DE-627)130799521</subfield><subfield code="w">(DE-600)1007949-X</subfield><subfield code="w">(DE-576)023042370</subfield><subfield code="x">0935-4964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:339-348</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00162-016-0383-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield><subfield code="h">339-348</subfield></datafield></record></collection>
|
author |
Gelfgat, Alexander Yu. |
spellingShingle |
Gelfgat, Alexander Yu. ddc 530 ddc 510 misc Incompressible flow misc Flow visualization misc Staggered grid Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions |
authorStr |
Gelfgat, Alexander Yu. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130799521 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0935-4964 |
topic_title |
530 620 VZ 510 530 VZ Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions Incompressible flow Flow visualization Staggered grid |
topic |
ddc 530 ddc 510 misc Incompressible flow misc Flow visualization misc Staggered grid |
topic_unstemmed |
ddc 530 ddc 510 misc Incompressible flow misc Flow visualization misc Staggered grid |
topic_browse |
ddc 530 ddc 510 misc Incompressible flow misc Flow visualization misc Staggered grid |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical and computational fluid dynamics |
hierarchy_parent_id |
130799521 |
dewey-tens |
530 - Physics 620 - Engineering 510 - Mathematics |
hierarchy_top_title |
Theoretical and computational fluid dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130799521 (DE-600)1007949-X (DE-576)023042370 |
title |
Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions |
ctrlnum |
(DE-627)OLC2071166086 (DE-He213)s00162-016-0383-z-p |
title_full |
Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions |
author_sort |
Gelfgat, Alexander Yu. |
journal |
Theoretical and computational fluid dynamics |
journalStr |
Theoretical and computational fluid dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
339 |
author_browse |
Gelfgat, Alexander Yu. |
container_volume |
30 |
class |
530 620 VZ 510 530 VZ |
format_se |
Aufsätze |
author-letter |
Gelfgat, Alexander Yu. |
doi_str_mv |
10.1007/s00162-016-0383-z |
dewey-full |
530 620 510 |
title_sort |
visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions |
title_auth |
Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions |
abstract |
Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin–Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented. © Springer-Verlag Berlin Heidelberg 2016 |
abstractGer |
Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin–Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented. © Springer-Verlag Berlin Heidelberg 2016 |
abstract_unstemmed |
Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin–Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented. © Springer-Verlag Berlin Heidelberg 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 |
container_issue |
4 |
title_short |
Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions |
url |
https://doi.org/10.1007/s00162-016-0383-z |
remote_bool |
false |
ppnlink |
130799521 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00162-016-0383-z |
up_date |
2024-07-04T03:06:23.935Z |
_version_ |
1803616134311706624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071166086</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401070848.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00162-016-0383-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071166086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00162-016-0383-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gelfgat, Alexander Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin–Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incompressible flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staggered grid</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and computational fluid dynamics</subfield><subfield code="d">Springer Berlin Heidelberg, 1989</subfield><subfield code="g">30(2016), 4 vom: 24. Feb., Seite 339-348</subfield><subfield code="w">(DE-627)130799521</subfield><subfield code="w">(DE-600)1007949-X</subfield><subfield code="w">(DE-576)023042370</subfield><subfield code="x">0935-4964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:339-348</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00162-016-0383-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield><subfield code="h">339-348</subfield></datafield></record></collection>
|
score |
7.400923 |