Congruence properties of lattices of quasivarieties
Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian...
Ausführliche Beschreibung
Autor*in: |
Adaricheva, K. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1997 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Plenum Publishing Corporation 1997 |
---|
Übergeordnetes Werk: |
Enthalten in: Algebra and logic - Kluwer Academic Publishers-Plenum Publishers, 1968, 36(1997), 6 vom: Nov., Seite 349-358 |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:1997 ; number:6 ; month:11 ; pages:349-358 |
Links: |
---|
DOI / URN: |
10.1007/BF02671552 |
---|
Katalog-ID: |
OLC2071181131 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071181131 | ||
003 | DE-627 | ||
005 | 20230502195852.0 | ||
007 | tu | ||
008 | 200820s1997 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02671552 |2 doi | |
035 | |a (DE-627)OLC2071181131 | ||
035 | |a (DE-He213)BF02671552-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Adaricheva, K. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Congruence properties of lattices of quasivarieties |
264 | 1 | |c 1997 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Plenum Publishing Corporation 1997 | ||
520 | |a Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian and locally finite. Namely, we state that for every congruence-Noetherian or finitely generated locally finite quasivariety K, the lattice $ L_{q} $(K) possesses the Day-Pudlak-Tuma property. But if a quasivariety is locally finite without the condition of being finitely generated), that lattice satisfies only the Pudlak-Tuma property. | ||
650 | 4 | |a Finite Lattice | |
650 | 4 | |a Algebraic Lattice | |
650 | 4 | |a Free Lattice | |
650 | 4 | |a Algebraic Subset | |
650 | 4 | |a Arbitrary Lattice | |
700 | 1 | |a Gorbunov, V. A. |4 aut | |
700 | 1 | |a Dziobiak, W. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Algebra and logic |d Kluwer Academic Publishers-Plenum Publishers, 1968 |g 36(1997), 6 vom: Nov., Seite 349-358 |w (DE-627)129934453 |w (DE-600)390280-8 |w (DE-576)015492621 |x 0002-5232 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:1997 |g number:6 |g month:11 |g pages:349-358 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02671552 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4314 | ||
951 | |a AR | ||
952 | |d 36 |j 1997 |e 6 |c 11 |h 349-358 |
author_variant |
k v a kv kva v a g va vag w d wd |
---|---|
matchkey_str |
article:00025232:1997----::ogunerprisfatcsf |
hierarchy_sort_str |
1997 |
publishDate |
1997 |
allfields |
10.1007/BF02671552 doi (DE-627)OLC2071181131 (DE-He213)BF02671552-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Adaricheva, K. V. verfasserin aut Congruence properties of lattices of quasivarieties 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian and locally finite. Namely, we state that for every congruence-Noetherian or finitely generated locally finite quasivariety K, the lattice $ L_{q} $(K) possesses the Day-Pudlak-Tuma property. But if a quasivariety is locally finite without the condition of being finitely generated), that lattice satisfies only the Pudlak-Tuma property. Finite Lattice Algebraic Lattice Free Lattice Algebraic Subset Arbitrary Lattice Gorbunov, V. A. aut Dziobiak, W. aut Enthalten in Algebra and logic Kluwer Academic Publishers-Plenum Publishers, 1968 36(1997), 6 vom: Nov., Seite 349-358 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:36 year:1997 number:6 month:11 pages:349-358 https://doi.org/10.1007/BF02671552 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4314 AR 36 1997 6 11 349-358 |
spelling |
10.1007/BF02671552 doi (DE-627)OLC2071181131 (DE-He213)BF02671552-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Adaricheva, K. V. verfasserin aut Congruence properties of lattices of quasivarieties 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian and locally finite. Namely, we state that for every congruence-Noetherian or finitely generated locally finite quasivariety K, the lattice $ L_{q} $(K) possesses the Day-Pudlak-Tuma property. But if a quasivariety is locally finite without the condition of being finitely generated), that lattice satisfies only the Pudlak-Tuma property. Finite Lattice Algebraic Lattice Free Lattice Algebraic Subset Arbitrary Lattice Gorbunov, V. A. aut Dziobiak, W. aut Enthalten in Algebra and logic Kluwer Academic Publishers-Plenum Publishers, 1968 36(1997), 6 vom: Nov., Seite 349-358 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:36 year:1997 number:6 month:11 pages:349-358 https://doi.org/10.1007/BF02671552 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4314 AR 36 1997 6 11 349-358 |
allfields_unstemmed |
10.1007/BF02671552 doi (DE-627)OLC2071181131 (DE-He213)BF02671552-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Adaricheva, K. V. verfasserin aut Congruence properties of lattices of quasivarieties 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian and locally finite. Namely, we state that for every congruence-Noetherian or finitely generated locally finite quasivariety K, the lattice $ L_{q} $(K) possesses the Day-Pudlak-Tuma property. But if a quasivariety is locally finite without the condition of being finitely generated), that lattice satisfies only the Pudlak-Tuma property. Finite Lattice Algebraic Lattice Free Lattice Algebraic Subset Arbitrary Lattice Gorbunov, V. A. aut Dziobiak, W. aut Enthalten in Algebra and logic Kluwer Academic Publishers-Plenum Publishers, 1968 36(1997), 6 vom: Nov., Seite 349-358 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:36 year:1997 number:6 month:11 pages:349-358 https://doi.org/10.1007/BF02671552 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4314 AR 36 1997 6 11 349-358 |
allfieldsGer |
10.1007/BF02671552 doi (DE-627)OLC2071181131 (DE-He213)BF02671552-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Adaricheva, K. V. verfasserin aut Congruence properties of lattices of quasivarieties 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian and locally finite. Namely, we state that for every congruence-Noetherian or finitely generated locally finite quasivariety K, the lattice $ L_{q} $(K) possesses the Day-Pudlak-Tuma property. But if a quasivariety is locally finite without the condition of being finitely generated), that lattice satisfies only the Pudlak-Tuma property. Finite Lattice Algebraic Lattice Free Lattice Algebraic Subset Arbitrary Lattice Gorbunov, V. A. aut Dziobiak, W. aut Enthalten in Algebra and logic Kluwer Academic Publishers-Plenum Publishers, 1968 36(1997), 6 vom: Nov., Seite 349-358 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:36 year:1997 number:6 month:11 pages:349-358 https://doi.org/10.1007/BF02671552 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4314 AR 36 1997 6 11 349-358 |
allfieldsSound |
10.1007/BF02671552 doi (DE-627)OLC2071181131 (DE-He213)BF02671552-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Adaricheva, K. V. verfasserin aut Congruence properties of lattices of quasivarieties 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian and locally finite. Namely, we state that for every congruence-Noetherian or finitely generated locally finite quasivariety K, the lattice $ L_{q} $(K) possesses the Day-Pudlak-Tuma property. But if a quasivariety is locally finite without the condition of being finitely generated), that lattice satisfies only the Pudlak-Tuma property. Finite Lattice Algebraic Lattice Free Lattice Algebraic Subset Arbitrary Lattice Gorbunov, V. A. aut Dziobiak, W. aut Enthalten in Algebra and logic Kluwer Academic Publishers-Plenum Publishers, 1968 36(1997), 6 vom: Nov., Seite 349-358 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:36 year:1997 number:6 month:11 pages:349-358 https://doi.org/10.1007/BF02671552 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4314 AR 36 1997 6 11 349-358 |
language |
English |
source |
Enthalten in Algebra and logic 36(1997), 6 vom: Nov., Seite 349-358 volume:36 year:1997 number:6 month:11 pages:349-358 |
sourceStr |
Enthalten in Algebra and logic 36(1997), 6 vom: Nov., Seite 349-358 volume:36 year:1997 number:6 month:11 pages:349-358 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Finite Lattice Algebraic Lattice Free Lattice Algebraic Subset Arbitrary Lattice |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Algebra and logic |
authorswithroles_txt_mv |
Adaricheva, K. V. @@aut@@ Gorbunov, V. A. @@aut@@ Dziobiak, W. @@aut@@ |
publishDateDaySort_date |
1997-11-01T00:00:00Z |
hierarchy_top_id |
129934453 |
dewey-sort |
3510 |
id |
OLC2071181131 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071181131</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195852.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02671552</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071181131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02671552-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adaricheva, K. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Congruence properties of lattices of quasivarieties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian and locally finite. Namely, we state that for every congruence-Noetherian or finitely generated locally finite quasivariety K, the lattice $ L_{q} $(K) possesses the Day-Pudlak-Tuma property. But if a quasivariety is locally finite without the condition of being finitely generated), that lattice satisfies only the Pudlak-Tuma property.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Subset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arbitrary Lattice</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gorbunov, V. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dziobiak, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebra and logic</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1968</subfield><subfield code="g">36(1997), 6 vom: Nov., Seite 349-358</subfield><subfield code="w">(DE-627)129934453</subfield><subfield code="w">(DE-600)390280-8</subfield><subfield code="w">(DE-576)015492621</subfield><subfield code="x">0002-5232</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:349-358</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02671552</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">1997</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">349-358</subfield></datafield></record></collection>
|
author |
Adaricheva, K. V. |
spellingShingle |
Adaricheva, K. V. ddc 510 ssgn 17,1 misc Finite Lattice misc Algebraic Lattice misc Free Lattice misc Algebraic Subset misc Arbitrary Lattice Congruence properties of lattices of quasivarieties |
authorStr |
Adaricheva, K. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129934453 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0002-5232 |
topic_title |
510 VZ 17,1 ssgn Congruence properties of lattices of quasivarieties Finite Lattice Algebraic Lattice Free Lattice Algebraic Subset Arbitrary Lattice |
topic |
ddc 510 ssgn 17,1 misc Finite Lattice misc Algebraic Lattice misc Free Lattice misc Algebraic Subset misc Arbitrary Lattice |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Finite Lattice misc Algebraic Lattice misc Free Lattice misc Algebraic Subset misc Arbitrary Lattice |
topic_browse |
ddc 510 ssgn 17,1 misc Finite Lattice misc Algebraic Lattice misc Free Lattice misc Algebraic Subset misc Arbitrary Lattice |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algebra and logic |
hierarchy_parent_id |
129934453 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Algebra and logic |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 |
title |
Congruence properties of lattices of quasivarieties |
ctrlnum |
(DE-627)OLC2071181131 (DE-He213)BF02671552-p |
title_full |
Congruence properties of lattices of quasivarieties |
author_sort |
Adaricheva, K. V. |
journal |
Algebra and logic |
journalStr |
Algebra and logic |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1997 |
contenttype_str_mv |
txt |
container_start_page |
349 |
author_browse |
Adaricheva, K. V. Gorbunov, V. A. Dziobiak, W. |
container_volume |
36 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Adaricheva, K. V. |
doi_str_mv |
10.1007/BF02671552 |
dewey-full |
510 |
title_sort |
congruence properties of lattices of quasivarieties |
title_auth |
Congruence properties of lattices of quasivarieties |
abstract |
Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian and locally finite. Namely, we state that for every congruence-Noetherian or finitely generated locally finite quasivariety K, the lattice $ L_{q} $(K) possesses the Day-Pudlak-Tuma property. But if a quasivariety is locally finite without the condition of being finitely generated), that lattice satisfies only the Pudlak-Tuma property. © Plenum Publishing Corporation 1997 |
abstractGer |
Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian and locally finite. Namely, we state that for every congruence-Noetherian or finitely generated locally finite quasivariety K, the lattice $ L_{q} $(K) possesses the Day-Pudlak-Tuma property. But if a quasivariety is locally finite without the condition of being finitely generated), that lattice satisfies only the Pudlak-Tuma property. © Plenum Publishing Corporation 1997 |
abstract_unstemmed |
Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian and locally finite. Namely, we state that for every congruence-Noetherian or finitely generated locally finite quasivariety K, the lattice $ L_{q} $(K) possesses the Day-Pudlak-Tuma property. But if a quasivariety is locally finite without the condition of being finitely generated), that lattice satisfies only the Pudlak-Tuma property. © Plenum Publishing Corporation 1997 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4314 |
container_issue |
6 |
title_short |
Congruence properties of lattices of quasivarieties |
url |
https://doi.org/10.1007/BF02671552 |
remote_bool |
false |
author2 |
Gorbunov, V. A. Dziobiak, W. |
author2Str |
Gorbunov, V. A. Dziobiak, W. |
ppnlink |
129934453 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02671552 |
up_date |
2024-07-04T03:07:40.994Z |
_version_ |
1803616215114973184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071181131</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195852.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02671552</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071181131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02671552-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adaricheva, K. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Congruence properties of lattices of quasivarieties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The congruence properties close to being lower boundedness in the sense of McKenzie are treated. In particular, the affirmative answer is obtained to a known question as to whether finite lattices of quasivarieties are lower bounded in the case where quasivarieties are congruence-Noetherian and locally finite. Namely, we state that for every congruence-Noetherian or finitely generated locally finite quasivariety K, the lattice $ L_{q} $(K) possesses the Day-Pudlak-Tuma property. But if a quasivariety is locally finite without the condition of being finitely generated), that lattice satisfies only the Pudlak-Tuma property.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Subset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arbitrary Lattice</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gorbunov, V. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dziobiak, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebra and logic</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1968</subfield><subfield code="g">36(1997), 6 vom: Nov., Seite 349-358</subfield><subfield code="w">(DE-627)129934453</subfield><subfield code="w">(DE-600)390280-8</subfield><subfield code="w">(DE-576)015492621</subfield><subfield code="x">0002-5232</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:349-358</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02671552</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">1997</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">349-358</subfield></datafield></record></collection>
|
score |
7.400487 |