Varieties and Torsion Classes of m-Groups
Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety.
Autor*in: |
Isaeva, O. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Anmerkung: |
© Plenum Publishing Corporation 2003 |
---|
Übergeordnetes Werk: |
Enthalten in: Algebra and logic - Kluwer Academic Publishers-Plenum Publishers, 1968, 42(2003), 6 vom: Nov., Seite 382-386 |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2003 ; number:6 ; month:11 ; pages:382-386 |
Links: |
---|
DOI / URN: |
10.1023/B:ALLO.0000004171.34849.1b |
---|
Katalog-ID: |
OLC2071183614 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071183614 | ||
003 | DE-627 | ||
005 | 20230502195857.0 | ||
007 | tu | ||
008 | 200820s2003 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/B:ALLO.0000004171.34849.1b |2 doi | |
035 | |a (DE-627)OLC2071183614 | ||
035 | |a (DE-He213)B:ALLO.0000004171.34849.1b-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Isaeva, O. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Varieties and Torsion Classes of m-Groups |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Plenum Publishing Corporation 2003 | ||
520 | |a Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety. | ||
773 | 0 | 8 | |i Enthalten in |t Algebra and logic |d Kluwer Academic Publishers-Plenum Publishers, 1968 |g 42(2003), 6 vom: Nov., Seite 382-386 |w (DE-627)129934453 |w (DE-600)390280-8 |w (DE-576)015492621 |x 0002-5232 |7 nnns |
773 | 1 | 8 | |g volume:42 |g year:2003 |g number:6 |g month:11 |g pages:382-386 |
856 | 4 | 1 | |u https://doi.org/10.1023/B:ALLO.0000004171.34849.1b |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4116 | ||
951 | |a AR | ||
952 | |d 42 |j 2003 |e 6 |c 11 |h 382-386 |
author_variant |
o v i ov ovi |
---|---|
matchkey_str |
article:00025232:2003----::aiteadosocas |
hierarchy_sort_str |
2003 |
publishDate |
2003 |
allfields |
10.1023/B:ALLO.0000004171.34849.1b doi (DE-627)OLC2071183614 (DE-He213)B:ALLO.0000004171.34849.1b-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Isaeva, O. V. verfasserin aut Varieties and Torsion Classes of m-Groups 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2003 Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety. Enthalten in Algebra and logic Kluwer Academic Publishers-Plenum Publishers, 1968 42(2003), 6 vom: Nov., Seite 382-386 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:42 year:2003 number:6 month:11 pages:382-386 https://doi.org/10.1023/B:ALLO.0000004171.34849.1b lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4116 AR 42 2003 6 11 382-386 |
spelling |
10.1023/B:ALLO.0000004171.34849.1b doi (DE-627)OLC2071183614 (DE-He213)B:ALLO.0000004171.34849.1b-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Isaeva, O. V. verfasserin aut Varieties and Torsion Classes of m-Groups 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2003 Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety. Enthalten in Algebra and logic Kluwer Academic Publishers-Plenum Publishers, 1968 42(2003), 6 vom: Nov., Seite 382-386 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:42 year:2003 number:6 month:11 pages:382-386 https://doi.org/10.1023/B:ALLO.0000004171.34849.1b lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4116 AR 42 2003 6 11 382-386 |
allfields_unstemmed |
10.1023/B:ALLO.0000004171.34849.1b doi (DE-627)OLC2071183614 (DE-He213)B:ALLO.0000004171.34849.1b-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Isaeva, O. V. verfasserin aut Varieties and Torsion Classes of m-Groups 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2003 Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety. Enthalten in Algebra and logic Kluwer Academic Publishers-Plenum Publishers, 1968 42(2003), 6 vom: Nov., Seite 382-386 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:42 year:2003 number:6 month:11 pages:382-386 https://doi.org/10.1023/B:ALLO.0000004171.34849.1b lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4116 AR 42 2003 6 11 382-386 |
allfieldsGer |
10.1023/B:ALLO.0000004171.34849.1b doi (DE-627)OLC2071183614 (DE-He213)B:ALLO.0000004171.34849.1b-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Isaeva, O. V. verfasserin aut Varieties and Torsion Classes of m-Groups 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2003 Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety. Enthalten in Algebra and logic Kluwer Academic Publishers-Plenum Publishers, 1968 42(2003), 6 vom: Nov., Seite 382-386 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:42 year:2003 number:6 month:11 pages:382-386 https://doi.org/10.1023/B:ALLO.0000004171.34849.1b lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4116 AR 42 2003 6 11 382-386 |
allfieldsSound |
10.1023/B:ALLO.0000004171.34849.1b doi (DE-627)OLC2071183614 (DE-He213)B:ALLO.0000004171.34849.1b-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Isaeva, O. V. verfasserin aut Varieties and Torsion Classes of m-Groups 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2003 Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety. Enthalten in Algebra and logic Kluwer Academic Publishers-Plenum Publishers, 1968 42(2003), 6 vom: Nov., Seite 382-386 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:42 year:2003 number:6 month:11 pages:382-386 https://doi.org/10.1023/B:ALLO.0000004171.34849.1b lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4116 AR 42 2003 6 11 382-386 |
language |
English |
source |
Enthalten in Algebra and logic 42(2003), 6 vom: Nov., Seite 382-386 volume:42 year:2003 number:6 month:11 pages:382-386 |
sourceStr |
Enthalten in Algebra and logic 42(2003), 6 vom: Nov., Seite 382-386 volume:42 year:2003 number:6 month:11 pages:382-386 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Algebra and logic |
authorswithroles_txt_mv |
Isaeva, O. V. @@aut@@ |
publishDateDaySort_date |
2003-11-01T00:00:00Z |
hierarchy_top_id |
129934453 |
dewey-sort |
3510 |
id |
OLC2071183614 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071183614</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195857.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/B:ALLO.0000004171.34849.1b</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071183614</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)B:ALLO.0000004171.34849.1b-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Isaeva, O. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Varieties and Torsion Classes of m-Groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebra and logic</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1968</subfield><subfield code="g">42(2003), 6 vom: Nov., Seite 382-386</subfield><subfield code="w">(DE-627)129934453</subfield><subfield code="w">(DE-600)390280-8</subfield><subfield code="w">(DE-576)015492621</subfield><subfield code="x">0002-5232</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:382-386</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/B:ALLO.0000004171.34849.1b</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2003</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">382-386</subfield></datafield></record></collection>
|
author |
Isaeva, O. V. |
spellingShingle |
Isaeva, O. V. ddc 510 ssgn 17,1 Varieties and Torsion Classes of m-Groups |
authorStr |
Isaeva, O. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129934453 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0002-5232 |
topic_title |
510 VZ 17,1 ssgn Varieties and Torsion Classes of m-Groups |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algebra and logic |
hierarchy_parent_id |
129934453 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Algebra and logic |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 |
title |
Varieties and Torsion Classes of m-Groups |
ctrlnum |
(DE-627)OLC2071183614 (DE-He213)B:ALLO.0000004171.34849.1b-p |
title_full |
Varieties and Torsion Classes of m-Groups |
author_sort |
Isaeva, O. V. |
journal |
Algebra and logic |
journalStr |
Algebra and logic |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
container_start_page |
382 |
author_browse |
Isaeva, O. V. |
container_volume |
42 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Isaeva, O. V. |
doi_str_mv |
10.1023/B:ALLO.0000004171.34849.1b |
dewey-full |
510 |
title_sort |
varieties and torsion classes of m-groups |
title_auth |
Varieties and Torsion Classes of m-Groups |
abstract |
Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety. © Plenum Publishing Corporation 2003 |
abstractGer |
Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety. © Plenum Publishing Corporation 2003 |
abstract_unstemmed |
Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety. © Plenum Publishing Corporation 2003 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4116 |
container_issue |
6 |
title_short |
Varieties and Torsion Classes of m-Groups |
url |
https://doi.org/10.1023/B:ALLO.0000004171.34849.1b |
remote_bool |
false |
ppnlink |
129934453 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/B:ALLO.0000004171.34849.1b |
up_date |
2024-07-04T03:07:54.240Z |
_version_ |
1803616229003362304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071183614</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195857.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/B:ALLO.0000004171.34849.1b</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071183614</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)B:ALLO.0000004171.34849.1b-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Isaeva, O. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Varieties and Torsion Classes of m-Groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that every variety of m-groups is a torsion class; find basis of identities for a product variety of m-groups; and show that the product of every finitely based variety of m-groups and a variety of Abelian m-groups is a finitely based variety.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebra and logic</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1968</subfield><subfield code="g">42(2003), 6 vom: Nov., Seite 382-386</subfield><subfield code="w">(DE-627)129934453</subfield><subfield code="w">(DE-600)390280-8</subfield><subfield code="w">(DE-576)015492621</subfield><subfield code="x">0002-5232</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:382-386</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/B:ALLO.0000004171.34849.1b</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2003</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">382-386</subfield></datafield></record></collection>
|
score |
7.399888 |