Analytic Hessian matrices and the computation of FIGARCH estimates
Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractio...
Ausführliche Beschreibung
Autor*in: |
Lombardi, Marco J. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2002 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2002 |
---|
Übergeordnetes Werk: |
Enthalten in: Statistical methods & applications - Springer-Verlag, 2001, 11(2002), 2 vom: Juni, Seite 247-264 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2002 ; number:2 ; month:06 ; pages:247-264 |
Links: |
---|
DOI / URN: |
10.1007/BF02511490 |
---|
Katalog-ID: |
OLC2071245210 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071245210 | ||
003 | DE-627 | ||
005 | 20230502180617.0 | ||
007 | tu | ||
008 | 200820s2002 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02511490 |2 doi | |
035 | |a (DE-627)OLC2071245210 | ||
035 | |a (DE-He213)BF02511490-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 24 |2 ssgn | ||
084 | |a 31.73$jMathematische Statistik |2 bkl | ||
100 | 1 | |a Lombardi, Marco J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analytic Hessian matrices and the computation of FIGARCH estimates |
264 | 1 | |c 2002 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2002 | ||
520 | |a Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data. | ||
650 | 4 | |a Conditional Variance | |
650 | 4 | |a GARCH Model | |
650 | 4 | |a Outer Product | |
650 | 4 | |a Financial Time Series | |
650 | 4 | |a Spot Exchange Rate | |
700 | 1 | |a Gallo, Giampiero M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Statistical methods & applications |d Springer-Verlag, 2001 |g 11(2002), 2 vom: Juni, Seite 247-264 |w (DE-627)350258929 |w (DE-600)2082218-2 |w (DE-576)09971888X |x 1618-2510 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2002 |g number:2 |g month:06 |g pages:247-264 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02511490 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-BBI | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
936 | b | k | |a 31.73$jMathematische Statistik |q VZ |0 106418998 |0 (DE-625)106418998 |
951 | |a AR | ||
952 | |d 11 |j 2002 |e 2 |c 06 |h 247-264 |
author_variant |
m j l mj mjl g m g gm gmg |
---|---|
matchkey_str |
article:16182510:2002----::nltcesamtieadhcmuainf |
hierarchy_sort_str |
2002 |
bklnumber |
31.73$jMathematische Statistik |
publishDate |
2002 |
allfields |
10.1007/BF02511490 doi (DE-627)OLC2071245210 (DE-He213)BF02511490-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 24 ssgn 31.73$jMathematische Statistik bkl Lombardi, Marco J. verfasserin aut Analytic Hessian matrices and the computation of FIGARCH estimates 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2002 Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data. Conditional Variance GARCH Model Outer Product Financial Time Series Spot Exchange Rate Gallo, Giampiero M. aut Enthalten in Statistical methods & applications Springer-Verlag, 2001 11(2002), 2 vom: Juni, Seite 247-264 (DE-627)350258929 (DE-600)2082218-2 (DE-576)09971888X 1618-2510 nnns volume:11 year:2002 number:2 month:06 pages:247-264 https://doi.org/10.1007/BF02511490 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 31.73$jMathematische Statistik VZ 106418998 (DE-625)106418998 AR 11 2002 2 06 247-264 |
spelling |
10.1007/BF02511490 doi (DE-627)OLC2071245210 (DE-He213)BF02511490-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 24 ssgn 31.73$jMathematische Statistik bkl Lombardi, Marco J. verfasserin aut Analytic Hessian matrices and the computation of FIGARCH estimates 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2002 Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data. Conditional Variance GARCH Model Outer Product Financial Time Series Spot Exchange Rate Gallo, Giampiero M. aut Enthalten in Statistical methods & applications Springer-Verlag, 2001 11(2002), 2 vom: Juni, Seite 247-264 (DE-627)350258929 (DE-600)2082218-2 (DE-576)09971888X 1618-2510 nnns volume:11 year:2002 number:2 month:06 pages:247-264 https://doi.org/10.1007/BF02511490 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 31.73$jMathematische Statistik VZ 106418998 (DE-625)106418998 AR 11 2002 2 06 247-264 |
allfields_unstemmed |
10.1007/BF02511490 doi (DE-627)OLC2071245210 (DE-He213)BF02511490-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 24 ssgn 31.73$jMathematische Statistik bkl Lombardi, Marco J. verfasserin aut Analytic Hessian matrices and the computation of FIGARCH estimates 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2002 Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data. Conditional Variance GARCH Model Outer Product Financial Time Series Spot Exchange Rate Gallo, Giampiero M. aut Enthalten in Statistical methods & applications Springer-Verlag, 2001 11(2002), 2 vom: Juni, Seite 247-264 (DE-627)350258929 (DE-600)2082218-2 (DE-576)09971888X 1618-2510 nnns volume:11 year:2002 number:2 month:06 pages:247-264 https://doi.org/10.1007/BF02511490 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 31.73$jMathematische Statistik VZ 106418998 (DE-625)106418998 AR 11 2002 2 06 247-264 |
allfieldsGer |
10.1007/BF02511490 doi (DE-627)OLC2071245210 (DE-He213)BF02511490-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 24 ssgn 31.73$jMathematische Statistik bkl Lombardi, Marco J. verfasserin aut Analytic Hessian matrices and the computation of FIGARCH estimates 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2002 Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data. Conditional Variance GARCH Model Outer Product Financial Time Series Spot Exchange Rate Gallo, Giampiero M. aut Enthalten in Statistical methods & applications Springer-Verlag, 2001 11(2002), 2 vom: Juni, Seite 247-264 (DE-627)350258929 (DE-600)2082218-2 (DE-576)09971888X 1618-2510 nnns volume:11 year:2002 number:2 month:06 pages:247-264 https://doi.org/10.1007/BF02511490 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 31.73$jMathematische Statistik VZ 106418998 (DE-625)106418998 AR 11 2002 2 06 247-264 |
allfieldsSound |
10.1007/BF02511490 doi (DE-627)OLC2071245210 (DE-He213)BF02511490-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 24 ssgn 31.73$jMathematische Statistik bkl Lombardi, Marco J. verfasserin aut Analytic Hessian matrices and the computation of FIGARCH estimates 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2002 Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data. Conditional Variance GARCH Model Outer Product Financial Time Series Spot Exchange Rate Gallo, Giampiero M. aut Enthalten in Statistical methods & applications Springer-Verlag, 2001 11(2002), 2 vom: Juni, Seite 247-264 (DE-627)350258929 (DE-600)2082218-2 (DE-576)09971888X 1618-2510 nnns volume:11 year:2002 number:2 month:06 pages:247-264 https://doi.org/10.1007/BF02511490 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 31.73$jMathematische Statistik VZ 106418998 (DE-625)106418998 AR 11 2002 2 06 247-264 |
language |
English |
source |
Enthalten in Statistical methods & applications 11(2002), 2 vom: Juni, Seite 247-264 volume:11 year:2002 number:2 month:06 pages:247-264 |
sourceStr |
Enthalten in Statistical methods & applications 11(2002), 2 vom: Juni, Seite 247-264 volume:11 year:2002 number:2 month:06 pages:247-264 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Conditional Variance GARCH Model Outer Product Financial Time Series Spot Exchange Rate |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Statistical methods & applications |
authorswithroles_txt_mv |
Lombardi, Marco J. @@aut@@ Gallo, Giampiero M. @@aut@@ |
publishDateDaySort_date |
2002-06-01T00:00:00Z |
hierarchy_top_id |
350258929 |
dewey-sort |
3510 |
id |
OLC2071245210 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071245210</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180617.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02511490</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071245210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02511490-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73$jMathematische Statistik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lombardi, Marco J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic Hessian matrices and the computation of FIGARCH estimates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conditional Variance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GARCH Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Outer Product</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Financial Time Series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spot Exchange Rate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gallo, Giampiero M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistical methods & applications</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">11(2002), 2 vom: Juni, Seite 247-264</subfield><subfield code="w">(DE-627)350258929</subfield><subfield code="w">(DE-600)2082218-2</subfield><subfield code="w">(DE-576)09971888X</subfield><subfield code="x">1618-2510</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:247-264</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02511490</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73$jMathematische Statistik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418998</subfield><subfield code="0">(DE-625)106418998</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2002</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">247-264</subfield></datafield></record></collection>
|
author |
Lombardi, Marco J. |
spellingShingle |
Lombardi, Marco J. ddc 510 ssgn 24 bkl 31.73$jMathematische Statistik misc Conditional Variance misc GARCH Model misc Outer Product misc Financial Time Series misc Spot Exchange Rate Analytic Hessian matrices and the computation of FIGARCH estimates |
authorStr |
Lombardi, Marco J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)350258929 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1618-2510 |
topic_title |
510 VZ 24 ssgn 31.73$jMathematische Statistik bkl Analytic Hessian matrices and the computation of FIGARCH estimates Conditional Variance GARCH Model Outer Product Financial Time Series Spot Exchange Rate |
topic |
ddc 510 ssgn 24 bkl 31.73$jMathematische Statistik misc Conditional Variance misc GARCH Model misc Outer Product misc Financial Time Series misc Spot Exchange Rate |
topic_unstemmed |
ddc 510 ssgn 24 bkl 31.73$jMathematische Statistik misc Conditional Variance misc GARCH Model misc Outer Product misc Financial Time Series misc Spot Exchange Rate |
topic_browse |
ddc 510 ssgn 24 bkl 31.73$jMathematische Statistik misc Conditional Variance misc GARCH Model misc Outer Product misc Financial Time Series misc Spot Exchange Rate |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Statistical methods & applications |
hierarchy_parent_id |
350258929 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Statistical methods & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)350258929 (DE-600)2082218-2 (DE-576)09971888X |
title |
Analytic Hessian matrices and the computation of FIGARCH estimates |
ctrlnum |
(DE-627)OLC2071245210 (DE-He213)BF02511490-p |
title_full |
Analytic Hessian matrices and the computation of FIGARCH estimates |
author_sort |
Lombardi, Marco J. |
journal |
Statistical methods & applications |
journalStr |
Statistical methods & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_start_page |
247 |
author_browse |
Lombardi, Marco J. Gallo, Giampiero M. |
container_volume |
11 |
class |
510 VZ 24 ssgn 31.73$jMathematische Statistik bkl |
format_se |
Aufsätze |
author-letter |
Lombardi, Marco J. |
doi_str_mv |
10.1007/BF02511490 |
normlink |
106418998 |
normlink_prefix_str_mv |
106418998 (DE-625)106418998 |
dewey-full |
510 |
title_sort |
analytic hessian matrices and the computation of figarch estimates |
title_auth |
Analytic Hessian matrices and the computation of FIGARCH estimates |
abstract |
Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data. © Springer-Verlag 2002 |
abstractGer |
Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data. © Springer-Verlag 2002 |
abstract_unstemmed |
Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data. © Springer-Verlag 2002 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 |
container_issue |
2 |
title_short |
Analytic Hessian matrices and the computation of FIGARCH estimates |
url |
https://doi.org/10.1007/BF02511490 |
remote_bool |
false |
author2 |
Gallo, Giampiero M. |
author2Str |
Gallo, Giampiero M. |
ppnlink |
350258929 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02511490 |
up_date |
2024-07-04T03:15:20.726Z |
_version_ |
1803616697174720512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071245210</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180617.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02511490</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071245210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02511490-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73$jMathematische Statistik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lombardi, Marco J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic Hessian matrices and the computation of FIGARCH estimates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Long memory in conditional variance is one of the empirical features exhibited by many financial time series. One class of models that was suggested to capture this behavior is the so-called Fractionally Integrated GARCH (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conditional Variance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GARCH Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Outer Product</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Financial Time Series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spot Exchange Rate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gallo, Giampiero M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistical methods & applications</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">11(2002), 2 vom: Juni, Seite 247-264</subfield><subfield code="w">(DE-627)350258929</subfield><subfield code="w">(DE-600)2082218-2</subfield><subfield code="w">(DE-576)09971888X</subfield><subfield code="x">1618-2510</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:247-264</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02511490</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73$jMathematische Statistik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418998</subfield><subfield code="0">(DE-625)106418998</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2002</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">247-264</subfield></datafield></record></collection>
|
score |
7.4023485 |