Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1
Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced...
Ausführliche Beschreibung
Autor*in: |
Shirakura, Teruhiro [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1979 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Institute of Statistical Mathematics, Tokyo 1979 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of the Institute of Statistical Mathematics - Kluwer Academic Publishers-Plenum Publishers, 1949, 31(1979), 1 vom: 01. Dez., Seite 57-65 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:1979 ; number:1 ; day:01 ; month:12 ; pages:57-65 |
Links: |
---|
DOI / URN: |
10.1007/BF02480265 |
---|
Katalog-ID: |
OLC2071675622 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071675622 | ||
003 | DE-627 | ||
005 | 20230502195517.0 | ||
007 | tu | ||
008 | 200820s1979 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02480265 |2 doi | |
035 | |a (DE-627)OLC2071675622 | ||
035 | |a (DE-He213)BF02480265-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Shirakura, Teruhiro |e verfasserin |4 aut | |
245 | 1 | 0 | |a Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 |
264 | 1 | |c 1979 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Institute of Statistical Mathematics, Tokyo 1979 | ||
520 | |a Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced arrays of strength 2l yield alias balanced and alias partially balanced designs. In particular, simple arrays which are a special case of balanced arrays yield alias partially balanced designs. At most $ 2^{m} $−1 alias balanced (or alias partially balanced) designs are generated from an alias balanced (or alias partially balanced) design by level permutations. This implies that alias balanced or alias partially balanced designs need not be orthogonal arrays or balanced arrays of strength 2l. | ||
650 | 4 | |a Factorial Design | |
650 | 4 | |a Orthogonal Array | |
650 | 4 | |a Information Matrix | |
650 | 4 | |a Fractional Factorial Design | |
650 | 4 | |a Balance Design | |
773 | 0 | 8 | |i Enthalten in |t Annals of the Institute of Statistical Mathematics |d Kluwer Academic Publishers-Plenum Publishers, 1949 |g 31(1979), 1 vom: 01. Dez., Seite 57-65 |w (DE-627)129934658 |w (DE-600)390313-8 |w (DE-576)015492907 |x 0020-3157 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:1979 |g number:1 |g day:01 |g month:12 |g pages:57-65 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02480265 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
951 | |a AR | ||
952 | |d 31 |j 1979 |e 1 |b 01 |c 12 |h 57-65 |
author_variant |
t s ts |
---|---|
matchkey_str |
article:00203157:1979----::lablneadlaprilyaacdrcinlmatrad |
hierarchy_sort_str |
1979 |
publishDate |
1979 |
allfields |
10.1007/BF02480265 doi (DE-627)OLC2071675622 (DE-He213)BF02480265-p DE-627 ger DE-627 rakwb eng 510 VZ Shirakura, Teruhiro verfasserin aut Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 1979 Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced arrays of strength 2l yield alias balanced and alias partially balanced designs. In particular, simple arrays which are a special case of balanced arrays yield alias partially balanced designs. At most $ 2^{m} $−1 alias balanced (or alias partially balanced) designs are generated from an alias balanced (or alias partially balanced) design by level permutations. This implies that alias balanced or alias partially balanced designs need not be orthogonal arrays or balanced arrays of strength 2l. Factorial Design Orthogonal Array Information Matrix Fractional Factorial Design Balance Design Enthalten in Annals of the Institute of Statistical Mathematics Kluwer Academic Publishers-Plenum Publishers, 1949 31(1979), 1 vom: 01. Dez., Seite 57-65 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:31 year:1979 number:1 day:01 month:12 pages:57-65 https://doi.org/10.1007/BF02480265 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 AR 31 1979 1 01 12 57-65 |
spelling |
10.1007/BF02480265 doi (DE-627)OLC2071675622 (DE-He213)BF02480265-p DE-627 ger DE-627 rakwb eng 510 VZ Shirakura, Teruhiro verfasserin aut Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 1979 Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced arrays of strength 2l yield alias balanced and alias partially balanced designs. In particular, simple arrays which are a special case of balanced arrays yield alias partially balanced designs. At most $ 2^{m} $−1 alias balanced (or alias partially balanced) designs are generated from an alias balanced (or alias partially balanced) design by level permutations. This implies that alias balanced or alias partially balanced designs need not be orthogonal arrays or balanced arrays of strength 2l. Factorial Design Orthogonal Array Information Matrix Fractional Factorial Design Balance Design Enthalten in Annals of the Institute of Statistical Mathematics Kluwer Academic Publishers-Plenum Publishers, 1949 31(1979), 1 vom: 01. Dez., Seite 57-65 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:31 year:1979 number:1 day:01 month:12 pages:57-65 https://doi.org/10.1007/BF02480265 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 AR 31 1979 1 01 12 57-65 |
allfields_unstemmed |
10.1007/BF02480265 doi (DE-627)OLC2071675622 (DE-He213)BF02480265-p DE-627 ger DE-627 rakwb eng 510 VZ Shirakura, Teruhiro verfasserin aut Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 1979 Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced arrays of strength 2l yield alias balanced and alias partially balanced designs. In particular, simple arrays which are a special case of balanced arrays yield alias partially balanced designs. At most $ 2^{m} $−1 alias balanced (or alias partially balanced) designs are generated from an alias balanced (or alias partially balanced) design by level permutations. This implies that alias balanced or alias partially balanced designs need not be orthogonal arrays or balanced arrays of strength 2l. Factorial Design Orthogonal Array Information Matrix Fractional Factorial Design Balance Design Enthalten in Annals of the Institute of Statistical Mathematics Kluwer Academic Publishers-Plenum Publishers, 1949 31(1979), 1 vom: 01. Dez., Seite 57-65 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:31 year:1979 number:1 day:01 month:12 pages:57-65 https://doi.org/10.1007/BF02480265 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 AR 31 1979 1 01 12 57-65 |
allfieldsGer |
10.1007/BF02480265 doi (DE-627)OLC2071675622 (DE-He213)BF02480265-p DE-627 ger DE-627 rakwb eng 510 VZ Shirakura, Teruhiro verfasserin aut Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 1979 Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced arrays of strength 2l yield alias balanced and alias partially balanced designs. In particular, simple arrays which are a special case of balanced arrays yield alias partially balanced designs. At most $ 2^{m} $−1 alias balanced (or alias partially balanced) designs are generated from an alias balanced (or alias partially balanced) design by level permutations. This implies that alias balanced or alias partially balanced designs need not be orthogonal arrays or balanced arrays of strength 2l. Factorial Design Orthogonal Array Information Matrix Fractional Factorial Design Balance Design Enthalten in Annals of the Institute of Statistical Mathematics Kluwer Academic Publishers-Plenum Publishers, 1949 31(1979), 1 vom: 01. Dez., Seite 57-65 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:31 year:1979 number:1 day:01 month:12 pages:57-65 https://doi.org/10.1007/BF02480265 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 AR 31 1979 1 01 12 57-65 |
allfieldsSound |
10.1007/BF02480265 doi (DE-627)OLC2071675622 (DE-He213)BF02480265-p DE-627 ger DE-627 rakwb eng 510 VZ Shirakura, Teruhiro verfasserin aut Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 1979 Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced arrays of strength 2l yield alias balanced and alias partially balanced designs. In particular, simple arrays which are a special case of balanced arrays yield alias partially balanced designs. At most $ 2^{m} $−1 alias balanced (or alias partially balanced) designs are generated from an alias balanced (or alias partially balanced) design by level permutations. This implies that alias balanced or alias partially balanced designs need not be orthogonal arrays or balanced arrays of strength 2l. Factorial Design Orthogonal Array Information Matrix Fractional Factorial Design Balance Design Enthalten in Annals of the Institute of Statistical Mathematics Kluwer Academic Publishers-Plenum Publishers, 1949 31(1979), 1 vom: 01. Dez., Seite 57-65 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:31 year:1979 number:1 day:01 month:12 pages:57-65 https://doi.org/10.1007/BF02480265 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 AR 31 1979 1 01 12 57-65 |
language |
English |
source |
Enthalten in Annals of the Institute of Statistical Mathematics 31(1979), 1 vom: 01. Dez., Seite 57-65 volume:31 year:1979 number:1 day:01 month:12 pages:57-65 |
sourceStr |
Enthalten in Annals of the Institute of Statistical Mathematics 31(1979), 1 vom: 01. Dez., Seite 57-65 volume:31 year:1979 number:1 day:01 month:12 pages:57-65 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Factorial Design Orthogonal Array Information Matrix Fractional Factorial Design Balance Design |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annals of the Institute of Statistical Mathematics |
authorswithroles_txt_mv |
Shirakura, Teruhiro @@aut@@ |
publishDateDaySort_date |
1979-12-01T00:00:00Z |
hierarchy_top_id |
129934658 |
dewey-sort |
3510 |
id |
OLC2071675622 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071675622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195517.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1979 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02480265</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071675622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02480265-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shirakura, Teruhiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1979</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Institute of Statistical Mathematics, Tokyo 1979</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced arrays of strength 2l yield alias balanced and alias partially balanced designs. In particular, simple arrays which are a special case of balanced arrays yield alias partially balanced designs. At most $ 2^{m} $−1 alias balanced (or alias partially balanced) designs are generated from an alias balanced (or alias partially balanced) design by level permutations. This implies that alias balanced or alias partially balanced designs need not be orthogonal arrays or balanced arrays of strength 2l.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factorial Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal Array</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional Factorial Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Balance Design</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of the Institute of Statistical Mathematics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1949</subfield><subfield code="g">31(1979), 1 vom: 01. Dez., Seite 57-65</subfield><subfield code="w">(DE-627)129934658</subfield><subfield code="w">(DE-600)390313-8</subfield><subfield code="w">(DE-576)015492907</subfield><subfield code="x">0020-3157</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:1979</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:57-65</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02480265</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">1979</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">57-65</subfield></datafield></record></collection>
|
author |
Shirakura, Teruhiro |
spellingShingle |
Shirakura, Teruhiro ddc 510 misc Factorial Design misc Orthogonal Array misc Information Matrix misc Fractional Factorial Design misc Balance Design Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 |
authorStr |
Shirakura, Teruhiro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129934658 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-3157 |
topic_title |
510 VZ Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 Factorial Design Orthogonal Array Information Matrix Fractional Factorial Design Balance Design |
topic |
ddc 510 misc Factorial Design misc Orthogonal Array misc Information Matrix misc Fractional Factorial Design misc Balance Design |
topic_unstemmed |
ddc 510 misc Factorial Design misc Orthogonal Array misc Information Matrix misc Fractional Factorial Design misc Balance Design |
topic_browse |
ddc 510 misc Factorial Design misc Orthogonal Array misc Information Matrix misc Fractional Factorial Design misc Balance Design |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annals of the Institute of Statistical Mathematics |
hierarchy_parent_id |
129934658 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annals of the Institute of Statistical Mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 |
title |
Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 |
ctrlnum |
(DE-627)OLC2071675622 (DE-He213)BF02480265-p |
title_full |
Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 |
author_sort |
Shirakura, Teruhiro |
journal |
Annals of the Institute of Statistical Mathematics |
journalStr |
Annals of the Institute of Statistical Mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1979 |
contenttype_str_mv |
txt |
container_start_page |
57 |
author_browse |
Shirakura, Teruhiro |
container_volume |
31 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Shirakura, Teruhiro |
doi_str_mv |
10.1007/BF02480265 |
dewey-full |
510 |
title_sort |
alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 |
title_auth |
Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 |
abstract |
Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced arrays of strength 2l yield alias balanced and alias partially balanced designs. In particular, simple arrays which are a special case of balanced arrays yield alias partially balanced designs. At most $ 2^{m} $−1 alias balanced (or alias partially balanced) designs are generated from an alias balanced (or alias partially balanced) design by level permutations. This implies that alias balanced or alias partially balanced designs need not be orthogonal arrays or balanced arrays of strength 2l. © The Institute of Statistical Mathematics, Tokyo 1979 |
abstractGer |
Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced arrays of strength 2l yield alias balanced and alias partially balanced designs. In particular, simple arrays which are a special case of balanced arrays yield alias partially balanced designs. At most $ 2^{m} $−1 alias balanced (or alias partially balanced) designs are generated from an alias balanced (or alias partially balanced) design by level permutations. This implies that alias balanced or alias partially balanced designs need not be orthogonal arrays or balanced arrays of strength 2l. © The Institute of Statistical Mathematics, Tokyo 1979 |
abstract_unstemmed |
Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced arrays of strength 2l yield alias balanced and alias partially balanced designs. In particular, simple arrays which are a special case of balanced arrays yield alias partially balanced designs. At most $ 2^{m} $−1 alias balanced (or alias partially balanced) designs are generated from an alias balanced (or alias partially balanced) design by level permutations. This implies that alias balanced or alias partially balanced designs need not be orthogonal arrays or balanced arrays of strength 2l. © The Institute of Statistical Mathematics, Tokyo 1979 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 |
container_issue |
1 |
title_short |
Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1 |
url |
https://doi.org/10.1007/BF02480265 |
remote_bool |
false |
ppnlink |
129934658 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02480265 |
up_date |
2024-07-04T03:58:31.802Z |
_version_ |
1803619414117974016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071675622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195517.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1979 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02480265</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071675622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02480265-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shirakura, Teruhiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Alias balanced and alias partially balanced fractional $ 2^{m} $ factorial designs of resolution 2l+1</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1979</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Institute of Statistical Mathematics, Tokyo 1979</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As a generalization of alias balanced designs due to Hedayat, Raktoe and Federer [5], we introduce the concept of alias partially balanced designs for fractional $ 2^{m} $ factorial designs of resolution 2l+1. All orthogonal arrays of strength 2l yield alias balanced designs. Some balanced arrays of strength 2l yield alias balanced and alias partially balanced designs. In particular, simple arrays which are a special case of balanced arrays yield alias partially balanced designs. At most $ 2^{m} $−1 alias balanced (or alias partially balanced) designs are generated from an alias balanced (or alias partially balanced) design by level permutations. This implies that alias balanced or alias partially balanced designs need not be orthogonal arrays or balanced arrays of strength 2l.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factorial Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal Array</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional Factorial Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Balance Design</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of the Institute of Statistical Mathematics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1949</subfield><subfield code="g">31(1979), 1 vom: 01. Dez., Seite 57-65</subfield><subfield code="w">(DE-627)129934658</subfield><subfield code="w">(DE-600)390313-8</subfield><subfield code="w">(DE-576)015492907</subfield><subfield code="x">0020-3157</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:1979</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:57-65</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02480265</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">1979</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">57-65</subfield></datafield></record></collection>
|
score |
7.4017544 |