A rate of convergence for the set compound estimation in a family of certain retracted distributions
Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ,...
Ausführliche Beschreibung
Autor*in: |
Nogami, Yoshiko [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1982 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Institute of Statistical Mathematics, Tokyo 1982 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of the Institute of Statistical Mathematics - Kluwer Academic Publishers-Plenum Publishers, 1949, 34(1982), 2 vom: 01. Dez., Seite 241-257 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:1982 ; number:2 ; day:01 ; month:12 ; pages:241-257 |
Links: |
---|
DOI / URN: |
10.1007/BF02481025 |
---|
Katalog-ID: |
OLC2071676815 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071676815 | ||
003 | DE-627 | ||
005 | 20230502195522.0 | ||
007 | tu | ||
008 | 200820s1982 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02481025 |2 doi | |
035 | |a (DE-627)OLC2071676815 | ||
035 | |a (DE-He213)BF02481025-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Nogami, Yoshiko |e verfasserin |4 aut | |
245 | 1 | 0 | |a A rate of convergence for the set compound estimation in a family of certain retracted distributions |
264 | 1 | |c 1982 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Institute of Statistical Mathematics, Tokyo 1982 | ||
520 | |a Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ, θ+1) than the uniform on [θ, θ+1) as in R. Fox (1970,Ann. Math. Statist.,41, 1845–1852; 1978,Ann. Statist.,6, 846–853) and exhibits a decision procedure based on$$\hat G_n $$ with a convergence rateO((n−1 logn)1/4) for the mofified regret uniformly in ($ θ_{1} $, $ θ_{2} $, ..., $ θ_{n} $ ∈ $ Ω^{n} $ with bounded Ω. The author also gives a counterexample to the convergence of the modified regret for Ω=(−∞, ∞). | ||
650 | 4 | |a Decision Procedure | |
650 | 4 | |a Lipschitz Condition | |
650 | 4 | |a Empiric Distribution Function | |
650 | 4 | |a Component Procedure | |
650 | 4 | |a Component Problem | |
773 | 0 | 8 | |i Enthalten in |t Annals of the Institute of Statistical Mathematics |d Kluwer Academic Publishers-Plenum Publishers, 1949 |g 34(1982), 2 vom: 01. Dez., Seite 241-257 |w (DE-627)129934658 |w (DE-600)390313-8 |w (DE-576)015492907 |x 0020-3157 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:1982 |g number:2 |g day:01 |g month:12 |g pages:241-257 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02481025 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
951 | |a AR | ||
952 | |d 34 |j 1982 |e 2 |b 01 |c 12 |h 241-257 |
author_variant |
y n yn |
---|---|
matchkey_str |
article:00203157:1982----::rtocnegneoteecmonetmtoiaaiyfeti |
hierarchy_sort_str |
1982 |
publishDate |
1982 |
allfields |
10.1007/BF02481025 doi (DE-627)OLC2071676815 (DE-He213)BF02481025-p DE-627 ger DE-627 rakwb eng 510 VZ Nogami, Yoshiko verfasserin aut A rate of convergence for the set compound estimation in a family of certain retracted distributions 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 1982 Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ, θ+1) than the uniform on [θ, θ+1) as in R. Fox (1970,Ann. Math. Statist.,41, 1845–1852; 1978,Ann. Statist.,6, 846–853) and exhibits a decision procedure based on$$\hat G_n $$ with a convergence rateO((n−1 logn)1/4) for the mofified regret uniformly in ($ θ_{1} $, $ θ_{2} $, ..., $ θ_{n} $ ∈ $ Ω^{n} $ with bounded Ω. The author also gives a counterexample to the convergence of the modified regret for Ω=(−∞, ∞). Decision Procedure Lipschitz Condition Empiric Distribution Function Component Procedure Component Problem Enthalten in Annals of the Institute of Statistical Mathematics Kluwer Academic Publishers-Plenum Publishers, 1949 34(1982), 2 vom: 01. Dez., Seite 241-257 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:34 year:1982 number:2 day:01 month:12 pages:241-257 https://doi.org/10.1007/BF02481025 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 AR 34 1982 2 01 12 241-257 |
spelling |
10.1007/BF02481025 doi (DE-627)OLC2071676815 (DE-He213)BF02481025-p DE-627 ger DE-627 rakwb eng 510 VZ Nogami, Yoshiko verfasserin aut A rate of convergence for the set compound estimation in a family of certain retracted distributions 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 1982 Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ, θ+1) than the uniform on [θ, θ+1) as in R. Fox (1970,Ann. Math. Statist.,41, 1845–1852; 1978,Ann. Statist.,6, 846–853) and exhibits a decision procedure based on$$\hat G_n $$ with a convergence rateO((n−1 logn)1/4) for the mofified regret uniformly in ($ θ_{1} $, $ θ_{2} $, ..., $ θ_{n} $ ∈ $ Ω^{n} $ with bounded Ω. The author also gives a counterexample to the convergence of the modified regret for Ω=(−∞, ∞). Decision Procedure Lipschitz Condition Empiric Distribution Function Component Procedure Component Problem Enthalten in Annals of the Institute of Statistical Mathematics Kluwer Academic Publishers-Plenum Publishers, 1949 34(1982), 2 vom: 01. Dez., Seite 241-257 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:34 year:1982 number:2 day:01 month:12 pages:241-257 https://doi.org/10.1007/BF02481025 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 AR 34 1982 2 01 12 241-257 |
allfields_unstemmed |
10.1007/BF02481025 doi (DE-627)OLC2071676815 (DE-He213)BF02481025-p DE-627 ger DE-627 rakwb eng 510 VZ Nogami, Yoshiko verfasserin aut A rate of convergence for the set compound estimation in a family of certain retracted distributions 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 1982 Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ, θ+1) than the uniform on [θ, θ+1) as in R. Fox (1970,Ann. Math. Statist.,41, 1845–1852; 1978,Ann. Statist.,6, 846–853) and exhibits a decision procedure based on$$\hat G_n $$ with a convergence rateO((n−1 logn)1/4) for the mofified regret uniformly in ($ θ_{1} $, $ θ_{2} $, ..., $ θ_{n} $ ∈ $ Ω^{n} $ with bounded Ω. The author also gives a counterexample to the convergence of the modified regret for Ω=(−∞, ∞). Decision Procedure Lipschitz Condition Empiric Distribution Function Component Procedure Component Problem Enthalten in Annals of the Institute of Statistical Mathematics Kluwer Academic Publishers-Plenum Publishers, 1949 34(1982), 2 vom: 01. Dez., Seite 241-257 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:34 year:1982 number:2 day:01 month:12 pages:241-257 https://doi.org/10.1007/BF02481025 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 AR 34 1982 2 01 12 241-257 |
allfieldsGer |
10.1007/BF02481025 doi (DE-627)OLC2071676815 (DE-He213)BF02481025-p DE-627 ger DE-627 rakwb eng 510 VZ Nogami, Yoshiko verfasserin aut A rate of convergence for the set compound estimation in a family of certain retracted distributions 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 1982 Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ, θ+1) than the uniform on [θ, θ+1) as in R. Fox (1970,Ann. Math. Statist.,41, 1845–1852; 1978,Ann. Statist.,6, 846–853) and exhibits a decision procedure based on$$\hat G_n $$ with a convergence rateO((n−1 logn)1/4) for the mofified regret uniformly in ($ θ_{1} $, $ θ_{2} $, ..., $ θ_{n} $ ∈ $ Ω^{n} $ with bounded Ω. The author also gives a counterexample to the convergence of the modified regret for Ω=(−∞, ∞). Decision Procedure Lipschitz Condition Empiric Distribution Function Component Procedure Component Problem Enthalten in Annals of the Institute of Statistical Mathematics Kluwer Academic Publishers-Plenum Publishers, 1949 34(1982), 2 vom: 01. Dez., Seite 241-257 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:34 year:1982 number:2 day:01 month:12 pages:241-257 https://doi.org/10.1007/BF02481025 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 AR 34 1982 2 01 12 241-257 |
allfieldsSound |
10.1007/BF02481025 doi (DE-627)OLC2071676815 (DE-He213)BF02481025-p DE-627 ger DE-627 rakwb eng 510 VZ Nogami, Yoshiko verfasserin aut A rate of convergence for the set compound estimation in a family of certain retracted distributions 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 1982 Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ, θ+1) than the uniform on [θ, θ+1) as in R. Fox (1970,Ann. Math. Statist.,41, 1845–1852; 1978,Ann. Statist.,6, 846–853) and exhibits a decision procedure based on$$\hat G_n $$ with a convergence rateO((n−1 logn)1/4) for the mofified regret uniformly in ($ θ_{1} $, $ θ_{2} $, ..., $ θ_{n} $ ∈ $ Ω^{n} $ with bounded Ω. The author also gives a counterexample to the convergence of the modified regret for Ω=(−∞, ∞). Decision Procedure Lipschitz Condition Empiric Distribution Function Component Procedure Component Problem Enthalten in Annals of the Institute of Statistical Mathematics Kluwer Academic Publishers-Plenum Publishers, 1949 34(1982), 2 vom: 01. Dez., Seite 241-257 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:34 year:1982 number:2 day:01 month:12 pages:241-257 https://doi.org/10.1007/BF02481025 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 AR 34 1982 2 01 12 241-257 |
language |
English |
source |
Enthalten in Annals of the Institute of Statistical Mathematics 34(1982), 2 vom: 01. Dez., Seite 241-257 volume:34 year:1982 number:2 day:01 month:12 pages:241-257 |
sourceStr |
Enthalten in Annals of the Institute of Statistical Mathematics 34(1982), 2 vom: 01. Dez., Seite 241-257 volume:34 year:1982 number:2 day:01 month:12 pages:241-257 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Decision Procedure Lipschitz Condition Empiric Distribution Function Component Procedure Component Problem |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annals of the Institute of Statistical Mathematics |
authorswithroles_txt_mv |
Nogami, Yoshiko @@aut@@ |
publishDateDaySort_date |
1982-12-01T00:00:00Z |
hierarchy_top_id |
129934658 |
dewey-sort |
3510 |
id |
OLC2071676815 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071676815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195522.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1982 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02481025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071676815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02481025-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nogami, Yoshiko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A rate of convergence for the set compound estimation in a family of certain retracted distributions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1982</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Institute of Statistical Mathematics, Tokyo 1982</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ, θ+1) than the uniform on [θ, θ+1) as in R. Fox (1970,Ann. Math. Statist.,41, 1845–1852; 1978,Ann. Statist.,6, 846–853) and exhibits a decision procedure based on$$\hat G_n $$ with a convergence rateO((n−1 logn)1/4) for the mofified regret uniformly in ($ θ_{1} $, $ θ_{2} $, ..., $ θ_{n} $ ∈ $ Ω^{n} $ with bounded Ω. The author also gives a counterexample to the convergence of the modified regret for Ω=(−∞, ∞).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision Procedure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipschitz Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Empiric Distribution Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Component Procedure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Component Problem</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of the Institute of Statistical Mathematics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1949</subfield><subfield code="g">34(1982), 2 vom: 01. Dez., Seite 241-257</subfield><subfield code="w">(DE-627)129934658</subfield><subfield code="w">(DE-600)390313-8</subfield><subfield code="w">(DE-576)015492907</subfield><subfield code="x">0020-3157</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:1982</subfield><subfield code="g">number:2</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:241-257</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02481025</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">1982</subfield><subfield code="e">2</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">241-257</subfield></datafield></record></collection>
|
author |
Nogami, Yoshiko |
spellingShingle |
Nogami, Yoshiko ddc 510 misc Decision Procedure misc Lipschitz Condition misc Empiric Distribution Function misc Component Procedure misc Component Problem A rate of convergence for the set compound estimation in a family of certain retracted distributions |
authorStr |
Nogami, Yoshiko |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129934658 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-3157 |
topic_title |
510 VZ A rate of convergence for the set compound estimation in a family of certain retracted distributions Decision Procedure Lipschitz Condition Empiric Distribution Function Component Procedure Component Problem |
topic |
ddc 510 misc Decision Procedure misc Lipschitz Condition misc Empiric Distribution Function misc Component Procedure misc Component Problem |
topic_unstemmed |
ddc 510 misc Decision Procedure misc Lipschitz Condition misc Empiric Distribution Function misc Component Procedure misc Component Problem |
topic_browse |
ddc 510 misc Decision Procedure misc Lipschitz Condition misc Empiric Distribution Function misc Component Procedure misc Component Problem |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annals of the Institute of Statistical Mathematics |
hierarchy_parent_id |
129934658 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annals of the Institute of Statistical Mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 |
title |
A rate of convergence for the set compound estimation in a family of certain retracted distributions |
ctrlnum |
(DE-627)OLC2071676815 (DE-He213)BF02481025-p |
title_full |
A rate of convergence for the set compound estimation in a family of certain retracted distributions |
author_sort |
Nogami, Yoshiko |
journal |
Annals of the Institute of Statistical Mathematics |
journalStr |
Annals of the Institute of Statistical Mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1982 |
contenttype_str_mv |
txt |
container_start_page |
241 |
author_browse |
Nogami, Yoshiko |
container_volume |
34 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Nogami, Yoshiko |
doi_str_mv |
10.1007/BF02481025 |
dewey-full |
510 |
title_sort |
a rate of convergence for the set compound estimation in a family of certain retracted distributions |
title_auth |
A rate of convergence for the set compound estimation in a family of certain retracted distributions |
abstract |
Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ, θ+1) than the uniform on [θ, θ+1) as in R. Fox (1970,Ann. Math. Statist.,41, 1845–1852; 1978,Ann. Statist.,6, 846–853) and exhibits a decision procedure based on$$\hat G_n $$ with a convergence rateO((n−1 logn)1/4) for the mofified regret uniformly in ($ θ_{1} $, $ θ_{2} $, ..., $ θ_{n} $ ∈ $ Ω^{n} $ with bounded Ω. The author also gives a counterexample to the convergence of the modified regret for Ω=(−∞, ∞). © The Institute of Statistical Mathematics, Tokyo 1982 |
abstractGer |
Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ, θ+1) than the uniform on [θ, θ+1) as in R. Fox (1970,Ann. Math. Statist.,41, 1845–1852; 1978,Ann. Statist.,6, 846–853) and exhibits a decision procedure based on$$\hat G_n $$ with a convergence rateO((n−1 logn)1/4) for the mofified regret uniformly in ($ θ_{1} $, $ θ_{2} $, ..., $ θ_{n} $ ∈ $ Ω^{n} $ with bounded Ω. The author also gives a counterexample to the convergence of the modified regret for Ω=(−∞, ∞). © The Institute of Statistical Mathematics, Tokyo 1982 |
abstract_unstemmed |
Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ, θ+1) than the uniform on [θ, θ+1) as in R. Fox (1970,Ann. Math. Statist.,41, 1845–1852; 1978,Ann. Statist.,6, 846–853) and exhibits a decision procedure based on$$\hat G_n $$ with a convergence rateO((n−1 logn)1/4) for the mofified regret uniformly in ($ θ_{1} $, $ θ_{2} $, ..., $ θ_{n} $ ∈ $ Ω^{n} $ with bounded Ω. The author also gives a counterexample to the convergence of the modified regret for Ω=(−∞, ∞). © The Institute of Statistical Mathematics, Tokyo 1982 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4316 GBV_ILN_4323 GBV_ILN_4324 |
container_issue |
2 |
title_short |
A rate of convergence for the set compound estimation in a family of certain retracted distributions |
url |
https://doi.org/10.1007/BF02481025 |
remote_bool |
false |
ppnlink |
129934658 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02481025 |
up_date |
2024-07-04T03:58:39.430Z |
_version_ |
1803619422102880256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071676815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195522.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1982 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02481025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071676815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02481025-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nogami, Yoshiko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A rate of convergence for the set compound estimation in a family of certain retracted distributions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1982</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Institute of Statistical Mathematics, Tokyo 1982</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary This paper is concerned with the set compound squared-error loss estimation problem. Here, the author obtains Lévy consistent estimate$$\hat G_n $$ of the empiric distributionGn of the parameters $ θ_{1} $,...,$ θ_{n} $ for a more general family of retracted distributions on the interval [θ, θ+1) than the uniform on [θ, θ+1) as in R. Fox (1970,Ann. Math. Statist.,41, 1845–1852; 1978,Ann. Statist.,6, 846–853) and exhibits a decision procedure based on$$\hat G_n $$ with a convergence rateO((n−1 logn)1/4) for the mofified regret uniformly in ($ θ_{1} $, $ θ_{2} $, ..., $ θ_{n} $ ∈ $ Ω^{n} $ with bounded Ω. The author also gives a counterexample to the convergence of the modified regret for Ω=(−∞, ∞).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision Procedure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipschitz Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Empiric Distribution Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Component Procedure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Component Problem</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of the Institute of Statistical Mathematics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1949</subfield><subfield code="g">34(1982), 2 vom: 01. Dez., Seite 241-257</subfield><subfield code="w">(DE-627)129934658</subfield><subfield code="w">(DE-600)390313-8</subfield><subfield code="w">(DE-576)015492907</subfield><subfield code="x">0020-3157</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:1982</subfield><subfield code="g">number:2</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:241-257</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02481025</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">1982</subfield><subfield code="e">2</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">241-257</subfield></datafield></record></collection>
|
score |
7.400755 |