Conditional extreme value models: fallacies and pitfalls
Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extre...
Ausführliche Beschreibung
Autor*in: |
Drees, Holger [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Extremes - Springer US, 1998, 20(2017), 4 vom: 01. Apr., Seite 777-805 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2017 ; number:4 ; day:01 ; month:04 ; pages:777-805 |
Links: |
---|
DOI / URN: |
10.1007/s10687-017-0293-5 |
---|
Katalog-ID: |
OLC2071722124 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071722124 | ||
003 | DE-627 | ||
005 | 20230503055325.0 | ||
007 | tu | ||
008 | 200819s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10687-017-0293-5 |2 doi | |
035 | |a (DE-627)OLC2071722124 | ||
035 | |a (DE-He213)s10687-017-0293-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
084 | |a 31.73$jMathematische Statistik |2 bkl | ||
100 | 1 | |a Drees, Holger |e verfasserin |0 (orcid)0000-0002-3254-7823 |4 aut | |
245 | 1 | 0 | |a Conditional extreme value models: fallacies and pitfalls |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2017 | ||
520 | |a Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extreme value theory which describes the behavior of a random vector as its norm (and therefore at least one of its components) becomes extreme. However, it turns out that this relationship is rather subtle and sometimes contrary to intuition. We clarify the differences between the two approaches with the help of several illuminative (counter)examples. Furthermore, we discuss marginal standardization, which is a useful tool in classical multivariate extreme value theory but, as we point out, much less straightforward and sometimes even obscuring in conditional extreme value models. Finally, we indicate how, in some situations, a more comprehensive characterization of the asymptotic behavior can be obtained if the conditions of conditional extreme value models are relaxed so that the limit is no longer unique. | ||
650 | 4 | |a Conditional extremes | |
650 | 4 | |a Hidden regular variation | |
650 | 4 | |a Multivariate extreme value models | |
700 | 1 | |a Janßen, Anja |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Extremes |d Springer US, 1998 |g 20(2017), 4 vom: 01. Apr., Seite 777-805 |w (DE-627)251481891 |w (DE-600)1452788-1 |w (DE-576)090853830 |x 1386-1999 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2017 |g number:4 |g day:01 |g month:04 |g pages:777-805 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10687-017-0293-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 31.73$jMathematische Statistik |q VZ |0 106418998 |0 (DE-625)106418998 |
951 | |a AR | ||
952 | |d 20 |j 2017 |e 4 |b 01 |c 04 |h 777-805 |
author_variant |
h d hd a j aj |
---|---|
matchkey_str |
article:13861999:2017----::odtoaeteeaumdlflai |
hierarchy_sort_str |
2017 |
bklnumber |
31.73$jMathematische Statistik |
publishDate |
2017 |
allfields |
10.1007/s10687-017-0293-5 doi (DE-627)OLC2071722124 (DE-He213)s10687-017-0293-5-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 31.73$jMathematische Statistik bkl Drees, Holger verfasserin (orcid)0000-0002-3254-7823 aut Conditional extreme value models: fallacies and pitfalls 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extreme value theory which describes the behavior of a random vector as its norm (and therefore at least one of its components) becomes extreme. However, it turns out that this relationship is rather subtle and sometimes contrary to intuition. We clarify the differences between the two approaches with the help of several illuminative (counter)examples. Furthermore, we discuss marginal standardization, which is a useful tool in classical multivariate extreme value theory but, as we point out, much less straightforward and sometimes even obscuring in conditional extreme value models. Finally, we indicate how, in some situations, a more comprehensive characterization of the asymptotic behavior can be obtained if the conditions of conditional extreme value models are relaxed so that the limit is no longer unique. Conditional extremes Hidden regular variation Multivariate extreme value models Janßen, Anja aut Enthalten in Extremes Springer US, 1998 20(2017), 4 vom: 01. Apr., Seite 777-805 (DE-627)251481891 (DE-600)1452788-1 (DE-576)090853830 1386-1999 nnns volume:20 year:2017 number:4 day:01 month:04 pages:777-805 https://doi.org/10.1007/s10687-017-0293-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73$jMathematische Statistik VZ 106418998 (DE-625)106418998 AR 20 2017 4 01 04 777-805 |
spelling |
10.1007/s10687-017-0293-5 doi (DE-627)OLC2071722124 (DE-He213)s10687-017-0293-5-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 31.73$jMathematische Statistik bkl Drees, Holger verfasserin (orcid)0000-0002-3254-7823 aut Conditional extreme value models: fallacies and pitfalls 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extreme value theory which describes the behavior of a random vector as its norm (and therefore at least one of its components) becomes extreme. However, it turns out that this relationship is rather subtle and sometimes contrary to intuition. We clarify the differences between the two approaches with the help of several illuminative (counter)examples. Furthermore, we discuss marginal standardization, which is a useful tool in classical multivariate extreme value theory but, as we point out, much less straightforward and sometimes even obscuring in conditional extreme value models. Finally, we indicate how, in some situations, a more comprehensive characterization of the asymptotic behavior can be obtained if the conditions of conditional extreme value models are relaxed so that the limit is no longer unique. Conditional extremes Hidden regular variation Multivariate extreme value models Janßen, Anja aut Enthalten in Extremes Springer US, 1998 20(2017), 4 vom: 01. Apr., Seite 777-805 (DE-627)251481891 (DE-600)1452788-1 (DE-576)090853830 1386-1999 nnns volume:20 year:2017 number:4 day:01 month:04 pages:777-805 https://doi.org/10.1007/s10687-017-0293-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73$jMathematische Statistik VZ 106418998 (DE-625)106418998 AR 20 2017 4 01 04 777-805 |
allfields_unstemmed |
10.1007/s10687-017-0293-5 doi (DE-627)OLC2071722124 (DE-He213)s10687-017-0293-5-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 31.73$jMathematische Statistik bkl Drees, Holger verfasserin (orcid)0000-0002-3254-7823 aut Conditional extreme value models: fallacies and pitfalls 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extreme value theory which describes the behavior of a random vector as its norm (and therefore at least one of its components) becomes extreme. However, it turns out that this relationship is rather subtle and sometimes contrary to intuition. We clarify the differences between the two approaches with the help of several illuminative (counter)examples. Furthermore, we discuss marginal standardization, which is a useful tool in classical multivariate extreme value theory but, as we point out, much less straightforward and sometimes even obscuring in conditional extreme value models. Finally, we indicate how, in some situations, a more comprehensive characterization of the asymptotic behavior can be obtained if the conditions of conditional extreme value models are relaxed so that the limit is no longer unique. Conditional extremes Hidden regular variation Multivariate extreme value models Janßen, Anja aut Enthalten in Extremes Springer US, 1998 20(2017), 4 vom: 01. Apr., Seite 777-805 (DE-627)251481891 (DE-600)1452788-1 (DE-576)090853830 1386-1999 nnns volume:20 year:2017 number:4 day:01 month:04 pages:777-805 https://doi.org/10.1007/s10687-017-0293-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73$jMathematische Statistik VZ 106418998 (DE-625)106418998 AR 20 2017 4 01 04 777-805 |
allfieldsGer |
10.1007/s10687-017-0293-5 doi (DE-627)OLC2071722124 (DE-He213)s10687-017-0293-5-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 31.73$jMathematische Statistik bkl Drees, Holger verfasserin (orcid)0000-0002-3254-7823 aut Conditional extreme value models: fallacies and pitfalls 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extreme value theory which describes the behavior of a random vector as its norm (and therefore at least one of its components) becomes extreme. However, it turns out that this relationship is rather subtle and sometimes contrary to intuition. We clarify the differences between the two approaches with the help of several illuminative (counter)examples. Furthermore, we discuss marginal standardization, which is a useful tool in classical multivariate extreme value theory but, as we point out, much less straightforward and sometimes even obscuring in conditional extreme value models. Finally, we indicate how, in some situations, a more comprehensive characterization of the asymptotic behavior can be obtained if the conditions of conditional extreme value models are relaxed so that the limit is no longer unique. Conditional extremes Hidden regular variation Multivariate extreme value models Janßen, Anja aut Enthalten in Extremes Springer US, 1998 20(2017), 4 vom: 01. Apr., Seite 777-805 (DE-627)251481891 (DE-600)1452788-1 (DE-576)090853830 1386-1999 nnns volume:20 year:2017 number:4 day:01 month:04 pages:777-805 https://doi.org/10.1007/s10687-017-0293-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73$jMathematische Statistik VZ 106418998 (DE-625)106418998 AR 20 2017 4 01 04 777-805 |
allfieldsSound |
10.1007/s10687-017-0293-5 doi (DE-627)OLC2071722124 (DE-He213)s10687-017-0293-5-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 31.73$jMathematische Statistik bkl Drees, Holger verfasserin (orcid)0000-0002-3254-7823 aut Conditional extreme value models: fallacies and pitfalls 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extreme value theory which describes the behavior of a random vector as its norm (and therefore at least one of its components) becomes extreme. However, it turns out that this relationship is rather subtle and sometimes contrary to intuition. We clarify the differences between the two approaches with the help of several illuminative (counter)examples. Furthermore, we discuss marginal standardization, which is a useful tool in classical multivariate extreme value theory but, as we point out, much less straightforward and sometimes even obscuring in conditional extreme value models. Finally, we indicate how, in some situations, a more comprehensive characterization of the asymptotic behavior can be obtained if the conditions of conditional extreme value models are relaxed so that the limit is no longer unique. Conditional extremes Hidden regular variation Multivariate extreme value models Janßen, Anja aut Enthalten in Extremes Springer US, 1998 20(2017), 4 vom: 01. Apr., Seite 777-805 (DE-627)251481891 (DE-600)1452788-1 (DE-576)090853830 1386-1999 nnns volume:20 year:2017 number:4 day:01 month:04 pages:777-805 https://doi.org/10.1007/s10687-017-0293-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73$jMathematische Statistik VZ 106418998 (DE-625)106418998 AR 20 2017 4 01 04 777-805 |
language |
English |
source |
Enthalten in Extremes 20(2017), 4 vom: 01. Apr., Seite 777-805 volume:20 year:2017 number:4 day:01 month:04 pages:777-805 |
sourceStr |
Enthalten in Extremes 20(2017), 4 vom: 01. Apr., Seite 777-805 volume:20 year:2017 number:4 day:01 month:04 pages:777-805 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Conditional extremes Hidden regular variation Multivariate extreme value models |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Extremes |
authorswithroles_txt_mv |
Drees, Holger @@aut@@ Janßen, Anja @@aut@@ |
publishDateDaySort_date |
2017-04-01T00:00:00Z |
hierarchy_top_id |
251481891 |
dewey-sort |
3510 |
id |
OLC2071722124 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071722124</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503055325.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10687-017-0293-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071722124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10687-017-0293-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73$jMathematische Statistik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Drees, Holger</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3254-7823</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conditional extreme value models: fallacies and pitfalls</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extreme value theory which describes the behavior of a random vector as its norm (and therefore at least one of its components) becomes extreme. However, it turns out that this relationship is rather subtle and sometimes contrary to intuition. We clarify the differences between the two approaches with the help of several illuminative (counter)examples. Furthermore, we discuss marginal standardization, which is a useful tool in classical multivariate extreme value theory but, as we point out, much less straightforward and sometimes even obscuring in conditional extreme value models. Finally, we indicate how, in some situations, a more comprehensive characterization of the asymptotic behavior can be obtained if the conditions of conditional extreme value models are relaxed so that the limit is no longer unique.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conditional extremes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hidden regular variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate extreme value models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janßen, Anja</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Extremes</subfield><subfield code="d">Springer US, 1998</subfield><subfield code="g">20(2017), 4 vom: 01. Apr., Seite 777-805</subfield><subfield code="w">(DE-627)251481891</subfield><subfield code="w">(DE-600)1452788-1</subfield><subfield code="w">(DE-576)090853830</subfield><subfield code="x">1386-1999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:777-805</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10687-017-0293-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73$jMathematische Statistik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418998</subfield><subfield code="0">(DE-625)106418998</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">04</subfield><subfield code="h">777-805</subfield></datafield></record></collection>
|
author |
Drees, Holger |
spellingShingle |
Drees, Holger ddc 510 ssgn 11 bkl 31.73$jMathematische Statistik misc Conditional extremes misc Hidden regular variation misc Multivariate extreme value models Conditional extreme value models: fallacies and pitfalls |
authorStr |
Drees, Holger |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)251481891 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1386-1999 |
topic_title |
510 VZ 11 ssgn 31.73$jMathematische Statistik bkl Conditional extreme value models: fallacies and pitfalls Conditional extremes Hidden regular variation Multivariate extreme value models |
topic |
ddc 510 ssgn 11 bkl 31.73$jMathematische Statistik misc Conditional extremes misc Hidden regular variation misc Multivariate extreme value models |
topic_unstemmed |
ddc 510 ssgn 11 bkl 31.73$jMathematische Statistik misc Conditional extremes misc Hidden regular variation misc Multivariate extreme value models |
topic_browse |
ddc 510 ssgn 11 bkl 31.73$jMathematische Statistik misc Conditional extremes misc Hidden regular variation misc Multivariate extreme value models |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Extremes |
hierarchy_parent_id |
251481891 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Extremes |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)251481891 (DE-600)1452788-1 (DE-576)090853830 |
title |
Conditional extreme value models: fallacies and pitfalls |
ctrlnum |
(DE-627)OLC2071722124 (DE-He213)s10687-017-0293-5-p |
title_full |
Conditional extreme value models: fallacies and pitfalls |
author_sort |
Drees, Holger |
journal |
Extremes |
journalStr |
Extremes |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
777 |
author_browse |
Drees, Holger Janßen, Anja |
container_volume |
20 |
class |
510 VZ 11 ssgn 31.73$jMathematische Statistik bkl |
format_se |
Aufsätze |
author-letter |
Drees, Holger |
doi_str_mv |
10.1007/s10687-017-0293-5 |
normlink |
(ORCID)0000-0002-3254-7823 106418998 |
normlink_prefix_str_mv |
(orcid)0000-0002-3254-7823 106418998 (DE-625)106418998 |
dewey-full |
510 |
title_sort |
conditional extreme value models: fallacies and pitfalls |
title_auth |
Conditional extreme value models: fallacies and pitfalls |
abstract |
Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extreme value theory which describes the behavior of a random vector as its norm (and therefore at least one of its components) becomes extreme. However, it turns out that this relationship is rather subtle and sometimes contrary to intuition. We clarify the differences between the two approaches with the help of several illuminative (counter)examples. Furthermore, we discuss marginal standardization, which is a useful tool in classical multivariate extreme value theory but, as we point out, much less straightforward and sometimes even obscuring in conditional extreme value models. Finally, we indicate how, in some situations, a more comprehensive characterization of the asymptotic behavior can be obtained if the conditions of conditional extreme value models are relaxed so that the limit is no longer unique. © Springer Science+Business Media New York 2017 |
abstractGer |
Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extreme value theory which describes the behavior of a random vector as its norm (and therefore at least one of its components) becomes extreme. However, it turns out that this relationship is rather subtle and sometimes contrary to intuition. We clarify the differences between the two approaches with the help of several illuminative (counter)examples. Furthermore, we discuss marginal standardization, which is a useful tool in classical multivariate extreme value theory but, as we point out, much less straightforward and sometimes even obscuring in conditional extreme value models. Finally, we indicate how, in some situations, a more comprehensive characterization of the asymptotic behavior can be obtained if the conditions of conditional extreme value models are relaxed so that the limit is no longer unique. © Springer Science+Business Media New York 2017 |
abstract_unstemmed |
Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extreme value theory which describes the behavior of a random vector as its norm (and therefore at least one of its components) becomes extreme. However, it turns out that this relationship is rather subtle and sometimes contrary to intuition. We clarify the differences between the two approaches with the help of several illuminative (counter)examples. Furthermore, we discuss marginal standardization, which is a useful tool in classical multivariate extreme value theory but, as we point out, much less straightforward and sometimes even obscuring in conditional extreme value models. Finally, we indicate how, in some situations, a more comprehensive characterization of the asymptotic behavior can be obtained if the conditions of conditional extreme value models are relaxed so that the limit is no longer unique. © Springer Science+Business Media New York 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
4 |
title_short |
Conditional extreme value models: fallacies and pitfalls |
url |
https://doi.org/10.1007/s10687-017-0293-5 |
remote_bool |
false |
author2 |
Janßen, Anja |
author2Str |
Janßen, Anja |
ppnlink |
251481891 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10687-017-0293-5 |
up_date |
2024-07-04T04:05:09Z |
_version_ |
1803619830596632576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071722124</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503055325.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10687-017-0293-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071722124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10687-017-0293-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73$jMathematische Statistik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Drees, Holger</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3254-7823</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conditional extreme value models: fallacies and pitfalls</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Conditional extreme value models have been introduced by Heffernan and Resnick (Ann. Appl. Probab., 17, 537–571, 2007) to describe the asymptotic behavior of a random vector as one specific component becomes extreme. Obviously, this class of models is related to classical multivariate extreme value theory which describes the behavior of a random vector as its norm (and therefore at least one of its components) becomes extreme. However, it turns out that this relationship is rather subtle and sometimes contrary to intuition. We clarify the differences between the two approaches with the help of several illuminative (counter)examples. Furthermore, we discuss marginal standardization, which is a useful tool in classical multivariate extreme value theory but, as we point out, much less straightforward and sometimes even obscuring in conditional extreme value models. Finally, we indicate how, in some situations, a more comprehensive characterization of the asymptotic behavior can be obtained if the conditions of conditional extreme value models are relaxed so that the limit is no longer unique.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conditional extremes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hidden regular variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate extreme value models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janßen, Anja</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Extremes</subfield><subfield code="d">Springer US, 1998</subfield><subfield code="g">20(2017), 4 vom: 01. Apr., Seite 777-805</subfield><subfield code="w">(DE-627)251481891</subfield><subfield code="w">(DE-600)1452788-1</subfield><subfield code="w">(DE-576)090853830</subfield><subfield code="x">1386-1999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:777-805</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10687-017-0293-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73$jMathematische Statistik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418998</subfield><subfield code="0">(DE-625)106418998</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">04</subfield><subfield code="h">777-805</subfield></datafield></record></collection>
|
score |
7.4012766 |