Trojan Horse Particle Invariance: An Extensive Study
Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, m...
Ausführliche Beschreibung
Autor*in: |
Pizzone, R. G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Wien 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Few body systems - Springer Vienna, 1986, 55(2014), 8-10 vom: 02. Feb., Seite 1001-1004 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2014 ; number:8-10 ; day:02 ; month:02 ; pages:1001-1004 |
Links: |
---|
DOI / URN: |
10.1007/s00601-014-0829-z |
---|
Katalog-ID: |
OLC2071774264 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071774264 | ||
003 | DE-627 | ||
005 | 20230502125636.0 | ||
007 | tu | ||
008 | 200819s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00601-014-0829-z |2 doi | |
035 | |a (DE-627)OLC2071774264 | ||
035 | |a (DE-He213)s00601-014-0829-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Pizzone, R. G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Trojan Horse Particle Invariance: An Extensive Study |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Wien 2014 | ||
520 | |a Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies. | ||
650 | 4 | |a Differential Cross Section | |
650 | 4 | |a Trojan Horse | |
650 | 4 | |a Nuclear Astrophysics | |
650 | 4 | |a Deuteron Wave Function | |
650 | 4 | |a Physical Case | |
700 | 1 | |a Spitaleri, C. |4 aut | |
700 | 1 | |a Sergi, M. L. |4 aut | |
700 | 1 | |a Lamia, L. |4 aut | |
700 | 1 | |a Tumino, A. |4 aut | |
700 | 1 | |a Bertulani, C. A. |4 aut | |
700 | 1 | |a Blokhintsev, L. |4 aut | |
700 | 1 | |a Burjan, V. |4 aut | |
700 | 1 | |a Kroha, V. |4 aut | |
700 | 1 | |a La Cognata, M. |4 aut | |
700 | 1 | |a Mrazek, J. |4 aut | |
700 | 1 | |a Mukhamedzhanov, A. M. |4 aut | |
700 | 1 | |a Spartá, R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Few body systems |d Springer Vienna, 1986 |g 55(2014), 8-10 vom: 02. Feb., Seite 1001-1004 |w (DE-627)129862819 |w (DE-600)283895-3 |w (DE-576)015175154 |x 0177-7963 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2014 |g number:8-10 |g day:02 |g month:02 |g pages:1001-1004 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00601-014-0829-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 33.00 |q VZ |
951 | |a AR | ||
952 | |d 55 |j 2014 |e 8-10 |b 02 |c 02 |h 1001-1004 |
author_variant |
r g p rg rgp c s cs m l s ml mls l l ll a t at c a b ca cab l b lb v b vb v k vk c m l cm cml j m jm a m m am amm r s rs |
---|---|
matchkey_str |
article:01777963:2014----::rjnosprilivracae |
hierarchy_sort_str |
2014 |
bklnumber |
33.00 |
publishDate |
2014 |
allfields |
10.1007/s00601-014-0829-z doi (DE-627)OLC2071774264 (DE-He213)s00601-014-0829-z-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Pizzone, R. G. verfasserin aut Trojan Horse Particle Invariance: An Extensive Study 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2014 Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies. Differential Cross Section Trojan Horse Nuclear Astrophysics Deuteron Wave Function Physical Case Spitaleri, C. aut Sergi, M. L. aut Lamia, L. aut Tumino, A. aut Bertulani, C. A. aut Blokhintsev, L. aut Burjan, V. aut Kroha, V. aut La Cognata, M. aut Mrazek, J. aut Mukhamedzhanov, A. M. aut Spartá, R. aut Enthalten in Few body systems Springer Vienna, 1986 55(2014), 8-10 vom: 02. Feb., Seite 1001-1004 (DE-627)129862819 (DE-600)283895-3 (DE-576)015175154 0177-7963 nnns volume:55 year:2014 number:8-10 day:02 month:02 pages:1001-1004 https://doi.org/10.1007/s00601-014-0829-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 55 2014 8-10 02 02 1001-1004 |
spelling |
10.1007/s00601-014-0829-z doi (DE-627)OLC2071774264 (DE-He213)s00601-014-0829-z-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Pizzone, R. G. verfasserin aut Trojan Horse Particle Invariance: An Extensive Study 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2014 Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies. Differential Cross Section Trojan Horse Nuclear Astrophysics Deuteron Wave Function Physical Case Spitaleri, C. aut Sergi, M. L. aut Lamia, L. aut Tumino, A. aut Bertulani, C. A. aut Blokhintsev, L. aut Burjan, V. aut Kroha, V. aut La Cognata, M. aut Mrazek, J. aut Mukhamedzhanov, A. M. aut Spartá, R. aut Enthalten in Few body systems Springer Vienna, 1986 55(2014), 8-10 vom: 02. Feb., Seite 1001-1004 (DE-627)129862819 (DE-600)283895-3 (DE-576)015175154 0177-7963 nnns volume:55 year:2014 number:8-10 day:02 month:02 pages:1001-1004 https://doi.org/10.1007/s00601-014-0829-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 55 2014 8-10 02 02 1001-1004 |
allfields_unstemmed |
10.1007/s00601-014-0829-z doi (DE-627)OLC2071774264 (DE-He213)s00601-014-0829-z-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Pizzone, R. G. verfasserin aut Trojan Horse Particle Invariance: An Extensive Study 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2014 Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies. Differential Cross Section Trojan Horse Nuclear Astrophysics Deuteron Wave Function Physical Case Spitaleri, C. aut Sergi, M. L. aut Lamia, L. aut Tumino, A. aut Bertulani, C. A. aut Blokhintsev, L. aut Burjan, V. aut Kroha, V. aut La Cognata, M. aut Mrazek, J. aut Mukhamedzhanov, A. M. aut Spartá, R. aut Enthalten in Few body systems Springer Vienna, 1986 55(2014), 8-10 vom: 02. Feb., Seite 1001-1004 (DE-627)129862819 (DE-600)283895-3 (DE-576)015175154 0177-7963 nnns volume:55 year:2014 number:8-10 day:02 month:02 pages:1001-1004 https://doi.org/10.1007/s00601-014-0829-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 55 2014 8-10 02 02 1001-1004 |
allfieldsGer |
10.1007/s00601-014-0829-z doi (DE-627)OLC2071774264 (DE-He213)s00601-014-0829-z-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Pizzone, R. G. verfasserin aut Trojan Horse Particle Invariance: An Extensive Study 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2014 Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies. Differential Cross Section Trojan Horse Nuclear Astrophysics Deuteron Wave Function Physical Case Spitaleri, C. aut Sergi, M. L. aut Lamia, L. aut Tumino, A. aut Bertulani, C. A. aut Blokhintsev, L. aut Burjan, V. aut Kroha, V. aut La Cognata, M. aut Mrazek, J. aut Mukhamedzhanov, A. M. aut Spartá, R. aut Enthalten in Few body systems Springer Vienna, 1986 55(2014), 8-10 vom: 02. Feb., Seite 1001-1004 (DE-627)129862819 (DE-600)283895-3 (DE-576)015175154 0177-7963 nnns volume:55 year:2014 number:8-10 day:02 month:02 pages:1001-1004 https://doi.org/10.1007/s00601-014-0829-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 55 2014 8-10 02 02 1001-1004 |
allfieldsSound |
10.1007/s00601-014-0829-z doi (DE-627)OLC2071774264 (DE-He213)s00601-014-0829-z-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Pizzone, R. G. verfasserin aut Trojan Horse Particle Invariance: An Extensive Study 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2014 Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies. Differential Cross Section Trojan Horse Nuclear Astrophysics Deuteron Wave Function Physical Case Spitaleri, C. aut Sergi, M. L. aut Lamia, L. aut Tumino, A. aut Bertulani, C. A. aut Blokhintsev, L. aut Burjan, V. aut Kroha, V. aut La Cognata, M. aut Mrazek, J. aut Mukhamedzhanov, A. M. aut Spartá, R. aut Enthalten in Few body systems Springer Vienna, 1986 55(2014), 8-10 vom: 02. Feb., Seite 1001-1004 (DE-627)129862819 (DE-600)283895-3 (DE-576)015175154 0177-7963 nnns volume:55 year:2014 number:8-10 day:02 month:02 pages:1001-1004 https://doi.org/10.1007/s00601-014-0829-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 55 2014 8-10 02 02 1001-1004 |
language |
English |
source |
Enthalten in Few body systems 55(2014), 8-10 vom: 02. Feb., Seite 1001-1004 volume:55 year:2014 number:8-10 day:02 month:02 pages:1001-1004 |
sourceStr |
Enthalten in Few body systems 55(2014), 8-10 vom: 02. Feb., Seite 1001-1004 volume:55 year:2014 number:8-10 day:02 month:02 pages:1001-1004 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Differential Cross Section Trojan Horse Nuclear Astrophysics Deuteron Wave Function Physical Case |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Few body systems |
authorswithroles_txt_mv |
Pizzone, R. G. @@aut@@ Spitaleri, C. @@aut@@ Sergi, M. L. @@aut@@ Lamia, L. @@aut@@ Tumino, A. @@aut@@ Bertulani, C. A. @@aut@@ Blokhintsev, L. @@aut@@ Burjan, V. @@aut@@ Kroha, V. @@aut@@ La Cognata, M. @@aut@@ Mrazek, J. @@aut@@ Mukhamedzhanov, A. M. @@aut@@ Spartá, R. @@aut@@ |
publishDateDaySort_date |
2014-02-02T00:00:00Z |
hierarchy_top_id |
129862819 |
dewey-sort |
3530 |
id |
OLC2071774264 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071774264</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502125636.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00601-014-0829-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071774264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00601-014-0829-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pizzone, R. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trojan Horse Particle Invariance: An Extensive Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Cross Section</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trojan Horse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deuteron Wave Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical Case</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spitaleri, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sergi, M. L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lamia, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tumino, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertulani, C. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blokhintsev, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burjan, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kroha, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">La Cognata, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mrazek, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mukhamedzhanov, A. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spartá, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Few body systems</subfield><subfield code="d">Springer Vienna, 1986</subfield><subfield code="g">55(2014), 8-10 vom: 02. Feb., Seite 1001-1004</subfield><subfield code="w">(DE-627)129862819</subfield><subfield code="w">(DE-600)283895-3</subfield><subfield code="w">(DE-576)015175154</subfield><subfield code="x">0177-7963</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:8-10</subfield><subfield code="g">day:02</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1001-1004</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00601-014-0829-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2014</subfield><subfield code="e">8-10</subfield><subfield code="b">02</subfield><subfield code="c">02</subfield><subfield code="h">1001-1004</subfield></datafield></record></collection>
|
author |
Pizzone, R. G. |
spellingShingle |
Pizzone, R. G. ddc 530 bkl 33.00 misc Differential Cross Section misc Trojan Horse misc Nuclear Astrophysics misc Deuteron Wave Function misc Physical Case Trojan Horse Particle Invariance: An Extensive Study |
authorStr |
Pizzone, R. G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129862819 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0177-7963 |
topic_title |
530 VZ 33.00 bkl Trojan Horse Particle Invariance: An Extensive Study Differential Cross Section Trojan Horse Nuclear Astrophysics Deuteron Wave Function Physical Case |
topic |
ddc 530 bkl 33.00 misc Differential Cross Section misc Trojan Horse misc Nuclear Astrophysics misc Deuteron Wave Function misc Physical Case |
topic_unstemmed |
ddc 530 bkl 33.00 misc Differential Cross Section misc Trojan Horse misc Nuclear Astrophysics misc Deuteron Wave Function misc Physical Case |
topic_browse |
ddc 530 bkl 33.00 misc Differential Cross Section misc Trojan Horse misc Nuclear Astrophysics misc Deuteron Wave Function misc Physical Case |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Few body systems |
hierarchy_parent_id |
129862819 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Few body systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129862819 (DE-600)283895-3 (DE-576)015175154 |
title |
Trojan Horse Particle Invariance: An Extensive Study |
ctrlnum |
(DE-627)OLC2071774264 (DE-He213)s00601-014-0829-z-p |
title_full |
Trojan Horse Particle Invariance: An Extensive Study |
author_sort |
Pizzone, R. G. |
journal |
Few body systems |
journalStr |
Few body systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
1001 |
author_browse |
Pizzone, R. G. Spitaleri, C. Sergi, M. L. Lamia, L. Tumino, A. Bertulani, C. A. Blokhintsev, L. Burjan, V. Kroha, V. La Cognata, M. Mrazek, J. Mukhamedzhanov, A. M. Spartá, R. |
container_volume |
55 |
class |
530 VZ 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Pizzone, R. G. |
doi_str_mv |
10.1007/s00601-014-0829-z |
dewey-full |
530 |
title_sort |
trojan horse particle invariance: an extensive study |
title_auth |
Trojan Horse Particle Invariance: An Extensive Study |
abstract |
Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies. © Springer-Verlag Wien 2014 |
abstractGer |
Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies. © Springer-Verlag Wien 2014 |
abstract_unstemmed |
Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies. © Springer-Verlag Wien 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
8-10 |
title_short |
Trojan Horse Particle Invariance: An Extensive Study |
url |
https://doi.org/10.1007/s00601-014-0829-z |
remote_bool |
false |
author2 |
Spitaleri, C. Sergi, M. L. Lamia, L. Tumino, A. Bertulani, C. A. Blokhintsev, L. Burjan, V. Kroha, V. La Cognata, M. Mrazek, J. Mukhamedzhanov, A. M. Spartá, R. |
author2Str |
Spitaleri, C. Sergi, M. L. Lamia, L. Tumino, A. Bertulani, C. A. Blokhintsev, L. Burjan, V. Kroha, V. La Cognata, M. Mrazek, J. Mukhamedzhanov, A. M. Spartá, R. |
ppnlink |
129862819 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00601-014-0829-z |
up_date |
2024-07-04T04:12:09.027Z |
_version_ |
1803620271028961280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071774264</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502125636.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00601-014-0829-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071774264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00601-014-0829-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pizzone, R. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trojan Horse Particle Invariance: An Extensive Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Cross Section</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trojan Horse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deuteron Wave Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical Case</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spitaleri, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sergi, M. L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lamia, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tumino, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertulani, C. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blokhintsev, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burjan, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kroha, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">La Cognata, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mrazek, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mukhamedzhanov, A. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spartá, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Few body systems</subfield><subfield code="d">Springer Vienna, 1986</subfield><subfield code="g">55(2014), 8-10 vom: 02. Feb., Seite 1001-1004</subfield><subfield code="w">(DE-627)129862819</subfield><subfield code="w">(DE-600)283895-3</subfield><subfield code="w">(DE-576)015175154</subfield><subfield code="x">0177-7963</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:8-10</subfield><subfield code="g">day:02</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1001-1004</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00601-014-0829-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2014</subfield><subfield code="e">8-10</subfield><subfield code="b">02</subfield><subfield code="c">02</subfield><subfield code="h">1001-1004</subfield></datafield></record></collection>
|
score |
7.399267 |