The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations
Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from...
Ausführliche Beschreibung
Autor*in: |
Watermann, J. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1994 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 1994 |
---|
Übergeordnetes Werk: |
Enthalten in: Annales geophysicae - Springer-Verlag, 1983, 12(1994), 12 vom: Dez., Seite 1144-1157 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:1994 ; number:12 ; month:12 ; pages:1144-1157 |
Links: |
---|
DOI / URN: |
10.1007/s00585-994-1144-7 |
---|
Katalog-ID: |
OLC2071778006 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071778006 | ||
003 | DE-627 | ||
005 | 20230502122514.0 | ||
007 | tu | ||
008 | 200819s1994 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00585-994-1144-7 |2 doi | |
035 | |a (DE-627)OLC2071778006 | ||
035 | |a (DE-He213)s00585-994-1144-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Watermann, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations |
264 | 1 | |c 1994 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 1994 | ||
520 | |a Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field. | ||
650 | 4 | |a Interplanetary Magnetic Field | |
650 | 4 | |a Geomagnetic Field | |
650 | 4 | |a Ionospheric Response | |
650 | 4 | |a Electric Field Measurement | |
650 | 4 | |a Invariant Latitude | |
700 | 1 | |a de la Beaujardière, O. |4 aut | |
700 | 1 | |a Lummerzheim, D. |4 aut | |
700 | 1 | |a Woch, J. |4 aut | |
700 | 1 | |a Newell, P. T. |4 aut | |
700 | 1 | |a Potemra, T. A. |4 aut | |
700 | 1 | |a Rich, F. J. |4 aut | |
700 | 1 | |a Shapshak, M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annales geophysicae |d Springer-Verlag, 1983 |g 12(1994), 12 vom: Dez., Seite 1144-1157 |w (DE-627)129620742 |w (DE-600)246086-5 |w (DE-576)01512696X |x 0992-7689 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:1994 |g number:12 |g month:12 |g pages:1144-1157 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00585-994-1144-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4038 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4309 | ||
912 | |a GBV_ILN_4317 | ||
951 | |a AR | ||
952 | |d 12 |j 1994 |e 12 |c 12 |h 1144-1157 |
author_variant |
j w jw l b o d lbo lbod d l dl j w jw p t n pt ptn t a p ta tap f j r fj fjr m s ms |
---|---|
matchkey_str |
article:09927689:1994----::hdnmcuptoattdscssuytlznvkndsfadodetoich |
hierarchy_sort_str |
1994 |
publishDate |
1994 |
allfields |
10.1007/s00585-994-1144-7 doi (DE-627)OLC2071778006 (DE-He213)s00585-994-1144-7-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Watermann, J. verfasserin aut The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1994 Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field. Interplanetary Magnetic Field Geomagnetic Field Ionospheric Response Electric Field Measurement Invariant Latitude de la Beaujardière, O. aut Lummerzheim, D. aut Woch, J. aut Newell, P. T. aut Potemra, T. A. aut Rich, F. J. aut Shapshak, M. aut Enthalten in Annales geophysicae Springer-Verlag, 1983 12(1994), 12 vom: Dez., Seite 1144-1157 (DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X 0992-7689 nnns volume:12 year:1994 number:12 month:12 pages:1144-1157 https://doi.org/10.1007/s00585-994-1144-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4038 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4317 AR 12 1994 12 12 1144-1157 |
spelling |
10.1007/s00585-994-1144-7 doi (DE-627)OLC2071778006 (DE-He213)s00585-994-1144-7-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Watermann, J. verfasserin aut The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1994 Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field. Interplanetary Magnetic Field Geomagnetic Field Ionospheric Response Electric Field Measurement Invariant Latitude de la Beaujardière, O. aut Lummerzheim, D. aut Woch, J. aut Newell, P. T. aut Potemra, T. A. aut Rich, F. J. aut Shapshak, M. aut Enthalten in Annales geophysicae Springer-Verlag, 1983 12(1994), 12 vom: Dez., Seite 1144-1157 (DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X 0992-7689 nnns volume:12 year:1994 number:12 month:12 pages:1144-1157 https://doi.org/10.1007/s00585-994-1144-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4038 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4317 AR 12 1994 12 12 1144-1157 |
allfields_unstemmed |
10.1007/s00585-994-1144-7 doi (DE-627)OLC2071778006 (DE-He213)s00585-994-1144-7-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Watermann, J. verfasserin aut The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1994 Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field. Interplanetary Magnetic Field Geomagnetic Field Ionospheric Response Electric Field Measurement Invariant Latitude de la Beaujardière, O. aut Lummerzheim, D. aut Woch, J. aut Newell, P. T. aut Potemra, T. A. aut Rich, F. J. aut Shapshak, M. aut Enthalten in Annales geophysicae Springer-Verlag, 1983 12(1994), 12 vom: Dez., Seite 1144-1157 (DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X 0992-7689 nnns volume:12 year:1994 number:12 month:12 pages:1144-1157 https://doi.org/10.1007/s00585-994-1144-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4038 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4317 AR 12 1994 12 12 1144-1157 |
allfieldsGer |
10.1007/s00585-994-1144-7 doi (DE-627)OLC2071778006 (DE-He213)s00585-994-1144-7-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Watermann, J. verfasserin aut The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1994 Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field. Interplanetary Magnetic Field Geomagnetic Field Ionospheric Response Electric Field Measurement Invariant Latitude de la Beaujardière, O. aut Lummerzheim, D. aut Woch, J. aut Newell, P. T. aut Potemra, T. A. aut Rich, F. J. aut Shapshak, M. aut Enthalten in Annales geophysicae Springer-Verlag, 1983 12(1994), 12 vom: Dez., Seite 1144-1157 (DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X 0992-7689 nnns volume:12 year:1994 number:12 month:12 pages:1144-1157 https://doi.org/10.1007/s00585-994-1144-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4038 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4317 AR 12 1994 12 12 1144-1157 |
allfieldsSound |
10.1007/s00585-994-1144-7 doi (DE-627)OLC2071778006 (DE-He213)s00585-994-1144-7-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Watermann, J. verfasserin aut The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1994 Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field. Interplanetary Magnetic Field Geomagnetic Field Ionospheric Response Electric Field Measurement Invariant Latitude de la Beaujardière, O. aut Lummerzheim, D. aut Woch, J. aut Newell, P. T. aut Potemra, T. A. aut Rich, F. J. aut Shapshak, M. aut Enthalten in Annales geophysicae Springer-Verlag, 1983 12(1994), 12 vom: Dez., Seite 1144-1157 (DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X 0992-7689 nnns volume:12 year:1994 number:12 month:12 pages:1144-1157 https://doi.org/10.1007/s00585-994-1144-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4038 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4317 AR 12 1994 12 12 1144-1157 |
language |
English |
source |
Enthalten in Annales geophysicae 12(1994), 12 vom: Dez., Seite 1144-1157 volume:12 year:1994 number:12 month:12 pages:1144-1157 |
sourceStr |
Enthalten in Annales geophysicae 12(1994), 12 vom: Dez., Seite 1144-1157 volume:12 year:1994 number:12 month:12 pages:1144-1157 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Interplanetary Magnetic Field Geomagnetic Field Ionospheric Response Electric Field Measurement Invariant Latitude |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Annales geophysicae |
authorswithroles_txt_mv |
Watermann, J. @@aut@@ de la Beaujardière, O. @@aut@@ Lummerzheim, D. @@aut@@ Woch, J. @@aut@@ Newell, P. T. @@aut@@ Potemra, T. A. @@aut@@ Rich, F. J. @@aut@@ Shapshak, M. @@aut@@ |
publishDateDaySort_date |
1994-12-01T00:00:00Z |
hierarchy_top_id |
129620742 |
dewey-sort |
3550 |
id |
OLC2071778006 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071778006</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502122514.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1994 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00585-994-1144-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071778006</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00585-994-1144-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Watermann, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1994</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1994</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interplanetary Magnetic Field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geomagnetic Field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric Response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric Field Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant Latitude</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de la Beaujardière, O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lummerzheim, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Woch, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Newell, P. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Potemra, T. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rich, F. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shapshak, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annales geophysicae</subfield><subfield code="d">Springer-Verlag, 1983</subfield><subfield code="g">12(1994), 12 vom: Dez., Seite 1144-1157</subfield><subfield code="w">(DE-627)129620742</subfield><subfield code="w">(DE-600)246086-5</subfield><subfield code="w">(DE-576)01512696X</subfield><subfield code="x">0992-7689</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:1994</subfield><subfield code="g">number:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1144-1157</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00585-994-1144-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">1994</subfield><subfield code="e">12</subfield><subfield code="c">12</subfield><subfield code="h">1144-1157</subfield></datafield></record></collection>
|
author |
Watermann, J. |
spellingShingle |
Watermann, J. ddc 550 ssgn 16,13 misc Interplanetary Magnetic Field misc Geomagnetic Field misc Ionospheric Response misc Electric Field Measurement misc Invariant Latitude The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations |
authorStr |
Watermann, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129620742 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0992-7689 |
topic_title |
550 VZ 16,13 ssgn The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations Interplanetary Magnetic Field Geomagnetic Field Ionospheric Response Electric Field Measurement Invariant Latitude |
topic |
ddc 550 ssgn 16,13 misc Interplanetary Magnetic Field misc Geomagnetic Field misc Ionospheric Response misc Electric Field Measurement misc Invariant Latitude |
topic_unstemmed |
ddc 550 ssgn 16,13 misc Interplanetary Magnetic Field misc Geomagnetic Field misc Ionospheric Response misc Electric Field Measurement misc Invariant Latitude |
topic_browse |
ddc 550 ssgn 16,13 misc Interplanetary Magnetic Field misc Geomagnetic Field misc Ionospheric Response misc Electric Field Measurement misc Invariant Latitude |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annales geophysicae |
hierarchy_parent_id |
129620742 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Annales geophysicae |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X |
title |
The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations |
ctrlnum |
(DE-627)OLC2071778006 (DE-He213)s00585-994-1144-7-p |
title_full |
The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations |
author_sort |
Watermann, J. |
journal |
Annales geophysicae |
journalStr |
Annales geophysicae |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1994 |
contenttype_str_mv |
txt |
container_start_page |
1144 |
author_browse |
Watermann, J. de la Beaujardière, O. Lummerzheim, D. Woch, J. Newell, P. T. Potemra, T. A. Rich, F. J. Shapshak, M. |
container_volume |
12 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Watermann, J. |
doi_str_mv |
10.1007/s00585-994-1144-7 |
dewey-full |
550 |
title_sort |
the dynamic cusp at low altitudes: a case study utilizing viking, dmsp-f7, and sondrestrom incoherent scatter radar observations |
title_auth |
The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations |
abstract |
Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field. © Springer-Verlag Berlin Heidelberg 1994 |
abstractGer |
Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field. © Springer-Verlag Berlin Heidelberg 1994 |
abstract_unstemmed |
Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field. © Springer-Verlag Berlin Heidelberg 1994 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4038 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4317 |
container_issue |
12 |
title_short |
The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations |
url |
https://doi.org/10.1007/s00585-994-1144-7 |
remote_bool |
false |
author2 |
de la Beaujardière, O. Lummerzheim, D. Woch, J. Newell, P. T. Potemra, T. A. Rich, F. J. Shapshak, M. |
author2Str |
de la Beaujardière, O. Lummerzheim, D. Woch, J. Newell, P. T. Potemra, T. A. Rich, F. J. Shapshak, M. |
ppnlink |
129620742 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00585-994-1144-7 |
up_date |
2024-07-04T04:12:39.226Z |
_version_ |
1803620302702247936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071778006</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502122514.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1994 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00585-994-1144-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071778006</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00585-994-1144-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Watermann, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1994</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1994</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interplanetary Magnetic Field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geomagnetic Field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric Response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric Field Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant Latitude</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de la Beaujardière, O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lummerzheim, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Woch, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Newell, P. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Potemra, T. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rich, F. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shapshak, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annales geophysicae</subfield><subfield code="d">Springer-Verlag, 1983</subfield><subfield code="g">12(1994), 12 vom: Dez., Seite 1144-1157</subfield><subfield code="w">(DE-627)129620742</subfield><subfield code="w">(DE-600)246086-5</subfield><subfield code="w">(DE-576)01512696X</subfield><subfield code="x">0992-7689</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:1994</subfield><subfield code="g">number:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1144-1157</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00585-994-1144-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">1994</subfield><subfield code="e">12</subfield><subfield code="c">12</subfield><subfield code="h">1144-1157</subfield></datafield></record></collection>
|
score |
7.399967 |