Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL
Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL)...
Ausführliche Beschreibung
Autor*in: |
Sarafopoulos, D. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1997 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 1997 |
---|
Übergeordnetes Werk: |
Enthalten in: Annales geophysicae - Springer-Verlag, 1983, 15(1997), 10 vom: Sept., Seite 1246-1256 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:1997 ; number:10 ; month:09 ; pages:1246-1256 |
Links: |
---|
DOI / URN: |
10.1007/s00585-997-1246-0 |
---|
Katalog-ID: |
OLC2071782119 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071782119 | ||
003 | DE-627 | ||
005 | 20230502122531.0 | ||
007 | tu | ||
008 | 200819s1997 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00585-997-1246-0 |2 doi | |
035 | |a (DE-627)OLC2071782119 | ||
035 | |a (DE-He213)s00585-997-1246-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Sarafopoulos, D. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL |
264 | 1 | |c 1997 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 1997 | ||
520 | |a Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL) and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later) when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last). Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H ‘ layer is confined within that of the energetic electron, the $ He^{++} $ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology. | ||
650 | 4 | |a Energetic Particle | |
650 | 4 | |a Velocity Dispersion | |
650 | 4 | |a Plasma Sheet | |
650 | 4 | |a Energetic Electron | |
650 | 4 | |a Neutral Sheet | |
700 | 1 | |a Sarris, E. T. |4 aut | |
700 | 1 | |a Angelopoulos, V. |4 aut | |
700 | 1 | |a Yamamoto, T. |4 aut | |
700 | 1 | |a Kokubun, S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annales geophysicae |d Springer-Verlag, 1983 |g 15(1997), 10 vom: Sept., Seite 1246-1256 |w (DE-627)129620742 |w (DE-600)246086-5 |w (DE-576)01512696X |x 0992-7689 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:1997 |g number:10 |g month:09 |g pages:1246-1256 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00585-997-1246-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4309 | ||
912 | |a GBV_ILN_4317 | ||
951 | |a AR | ||
952 | |d 15 |j 1997 |e 10 |c 09 |h 1246-1256 |
author_variant |
d v s dv dvs e t s et ets v a va t y ty s k sk |
---|---|
matchkey_str |
article:09927689:1997----::ptasrcuefhpamsetonayaeadsacsraeta10_adrvdrmnre |
hierarchy_sort_str |
1997 |
publishDate |
1997 |
allfields |
10.1007/s00585-997-1246-0 doi (DE-627)OLC2071782119 (DE-He213)s00585-997-1246-0-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Sarafopoulos, D. V. verfasserin aut Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1997 Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL) and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later) when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last). Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H ‘ layer is confined within that of the energetic electron, the $ He^{++} $ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology. Energetic Particle Velocity Dispersion Plasma Sheet Energetic Electron Neutral Sheet Sarris, E. T. aut Angelopoulos, V. aut Yamamoto, T. aut Kokubun, S. aut Enthalten in Annales geophysicae Springer-Verlag, 1983 15(1997), 10 vom: Sept., Seite 1246-1256 (DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X 0992-7689 nnns volume:15 year:1997 number:10 month:09 pages:1246-1256 https://doi.org/10.1007/s00585-997-1246-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4309 GBV_ILN_4317 AR 15 1997 10 09 1246-1256 |
spelling |
10.1007/s00585-997-1246-0 doi (DE-627)OLC2071782119 (DE-He213)s00585-997-1246-0-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Sarafopoulos, D. V. verfasserin aut Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1997 Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL) and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later) when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last). Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H ‘ layer is confined within that of the energetic electron, the $ He^{++} $ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology. Energetic Particle Velocity Dispersion Plasma Sheet Energetic Electron Neutral Sheet Sarris, E. T. aut Angelopoulos, V. aut Yamamoto, T. aut Kokubun, S. aut Enthalten in Annales geophysicae Springer-Verlag, 1983 15(1997), 10 vom: Sept., Seite 1246-1256 (DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X 0992-7689 nnns volume:15 year:1997 number:10 month:09 pages:1246-1256 https://doi.org/10.1007/s00585-997-1246-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4309 GBV_ILN_4317 AR 15 1997 10 09 1246-1256 |
allfields_unstemmed |
10.1007/s00585-997-1246-0 doi (DE-627)OLC2071782119 (DE-He213)s00585-997-1246-0-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Sarafopoulos, D. V. verfasserin aut Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1997 Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL) and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later) when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last). Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H ‘ layer is confined within that of the energetic electron, the $ He^{++} $ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology. Energetic Particle Velocity Dispersion Plasma Sheet Energetic Electron Neutral Sheet Sarris, E. T. aut Angelopoulos, V. aut Yamamoto, T. aut Kokubun, S. aut Enthalten in Annales geophysicae Springer-Verlag, 1983 15(1997), 10 vom: Sept., Seite 1246-1256 (DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X 0992-7689 nnns volume:15 year:1997 number:10 month:09 pages:1246-1256 https://doi.org/10.1007/s00585-997-1246-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4309 GBV_ILN_4317 AR 15 1997 10 09 1246-1256 |
allfieldsGer |
10.1007/s00585-997-1246-0 doi (DE-627)OLC2071782119 (DE-He213)s00585-997-1246-0-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Sarafopoulos, D. V. verfasserin aut Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1997 Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL) and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later) when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last). Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H ‘ layer is confined within that of the energetic electron, the $ He^{++} $ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology. Energetic Particle Velocity Dispersion Plasma Sheet Energetic Electron Neutral Sheet Sarris, E. T. aut Angelopoulos, V. aut Yamamoto, T. aut Kokubun, S. aut Enthalten in Annales geophysicae Springer-Verlag, 1983 15(1997), 10 vom: Sept., Seite 1246-1256 (DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X 0992-7689 nnns volume:15 year:1997 number:10 month:09 pages:1246-1256 https://doi.org/10.1007/s00585-997-1246-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4309 GBV_ILN_4317 AR 15 1997 10 09 1246-1256 |
allfieldsSound |
10.1007/s00585-997-1246-0 doi (DE-627)OLC2071782119 (DE-He213)s00585-997-1246-0-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Sarafopoulos, D. V. verfasserin aut Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1997 Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL) and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later) when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last). Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H ‘ layer is confined within that of the energetic electron, the $ He^{++} $ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology. Energetic Particle Velocity Dispersion Plasma Sheet Energetic Electron Neutral Sheet Sarris, E. T. aut Angelopoulos, V. aut Yamamoto, T. aut Kokubun, S. aut Enthalten in Annales geophysicae Springer-Verlag, 1983 15(1997), 10 vom: Sept., Seite 1246-1256 (DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X 0992-7689 nnns volume:15 year:1997 number:10 month:09 pages:1246-1256 https://doi.org/10.1007/s00585-997-1246-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4309 GBV_ILN_4317 AR 15 1997 10 09 1246-1256 |
language |
English |
source |
Enthalten in Annales geophysicae 15(1997), 10 vom: Sept., Seite 1246-1256 volume:15 year:1997 number:10 month:09 pages:1246-1256 |
sourceStr |
Enthalten in Annales geophysicae 15(1997), 10 vom: Sept., Seite 1246-1256 volume:15 year:1997 number:10 month:09 pages:1246-1256 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Energetic Particle Velocity Dispersion Plasma Sheet Energetic Electron Neutral Sheet |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Annales geophysicae |
authorswithroles_txt_mv |
Sarafopoulos, D. V. @@aut@@ Sarris, E. T. @@aut@@ Angelopoulos, V. @@aut@@ Yamamoto, T. @@aut@@ Kokubun, S. @@aut@@ |
publishDateDaySort_date |
1997-09-01T00:00:00Z |
hierarchy_top_id |
129620742 |
dewey-sort |
3550 |
id |
OLC2071782119 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071782119</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502122531.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00585-997-1246-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071782119</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00585-997-1246-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sarafopoulos, D. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL) and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later) when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last). Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H ‘ layer is confined within that of the energetic electron, the $ He^{++} $ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energetic Particle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Velocity Dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Sheet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energetic Electron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutral Sheet</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarris, E. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angelopoulos, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamamoto, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kokubun, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annales geophysicae</subfield><subfield code="d">Springer-Verlag, 1983</subfield><subfield code="g">15(1997), 10 vom: Sept., Seite 1246-1256</subfield><subfield code="w">(DE-627)129620742</subfield><subfield code="w">(DE-600)246086-5</subfield><subfield code="w">(DE-576)01512696X</subfield><subfield code="x">0992-7689</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:10</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1246-1256</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00585-997-1246-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">1997</subfield><subfield code="e">10</subfield><subfield code="c">09</subfield><subfield code="h">1246-1256</subfield></datafield></record></collection>
|
author |
Sarafopoulos, D. V. |
spellingShingle |
Sarafopoulos, D. V. ddc 550 ssgn 16,13 misc Energetic Particle misc Velocity Dispersion misc Plasma Sheet misc Energetic Electron misc Neutral Sheet Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL |
authorStr |
Sarafopoulos, D. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129620742 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0992-7689 |
topic_title |
550 VZ 16,13 ssgn Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL Energetic Particle Velocity Dispersion Plasma Sheet Energetic Electron Neutral Sheet |
topic |
ddc 550 ssgn 16,13 misc Energetic Particle misc Velocity Dispersion misc Plasma Sheet misc Energetic Electron misc Neutral Sheet |
topic_unstemmed |
ddc 550 ssgn 16,13 misc Energetic Particle misc Velocity Dispersion misc Plasma Sheet misc Energetic Electron misc Neutral Sheet |
topic_browse |
ddc 550 ssgn 16,13 misc Energetic Particle misc Velocity Dispersion misc Plasma Sheet misc Energetic Electron misc Neutral Sheet |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annales geophysicae |
hierarchy_parent_id |
129620742 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Annales geophysicae |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129620742 (DE-600)246086-5 (DE-576)01512696X |
title |
Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL |
ctrlnum |
(DE-627)OLC2071782119 (DE-He213)s00585-997-1246-0-p |
title_full |
Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL |
author_sort |
Sarafopoulos, D. V. |
journal |
Annales geophysicae |
journalStr |
Annales geophysicae |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1997 |
contenttype_str_mv |
txt |
container_start_page |
1246 |
author_browse |
Sarafopoulos, D. V. Sarris, E. T. Angelopoulos, V. Yamamoto, T. Kokubun, S. |
container_volume |
15 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Sarafopoulos, D. V. |
doi_str_mv |
10.1007/s00585-997-1246-0 |
dewey-full |
550 |
title_sort |
spatial structure of the plasma sheet boundary layer at distances greater than 180 $ r_{e} $ as derived from energetic particle measurements on geotail |
title_auth |
Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL |
abstract |
Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL) and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later) when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last). Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H ‘ layer is confined within that of the energetic electron, the $ He^{++} $ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology. © Springer-Verlag Berlin Heidelberg 1997 |
abstractGer |
Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL) and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later) when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last). Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H ‘ layer is confined within that of the energetic electron, the $ He^{++} $ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology. © Springer-Verlag Berlin Heidelberg 1997 |
abstract_unstemmed |
Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL) and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later) when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last). Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H ‘ layer is confined within that of the energetic electron, the $ He^{++} $ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology. © Springer-Verlag Berlin Heidelberg 1997 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_267 GBV_ILN_601 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4277 GBV_ILN_4309 GBV_ILN_4317 |
container_issue |
10 |
title_short |
Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL |
url |
https://doi.org/10.1007/s00585-997-1246-0 |
remote_bool |
false |
author2 |
Sarris, E. T. Angelopoulos, V. Yamamoto, T. Kokubun, S. |
author2Str |
Sarris, E. T. Angelopoulos, V. Yamamoto, T. Kokubun, S. |
ppnlink |
129620742 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00585-997-1246-0 |
up_date |
2024-07-04T04:13:19.953Z |
_version_ |
1803620345399214080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071782119</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502122531.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00585-997-1246-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071782119</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00585-997-1246-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sarafopoulos, D. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial structure of the plasma sheet boundary layer at distances greater than 180 $ R_{E} $ as derived from energetic particle measurements on GEOTAIL</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RK). Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL) and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later) when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last). Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H ‘ layer is confined within that of the energetic electron, the $ He^{++} $ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energetic Particle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Velocity Dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Sheet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energetic Electron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutral Sheet</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarris, E. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angelopoulos, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamamoto, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kokubun, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annales geophysicae</subfield><subfield code="d">Springer-Verlag, 1983</subfield><subfield code="g">15(1997), 10 vom: Sept., Seite 1246-1256</subfield><subfield code="w">(DE-627)129620742</subfield><subfield code="w">(DE-600)246086-5</subfield><subfield code="w">(DE-576)01512696X</subfield><subfield code="x">0992-7689</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:10</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1246-1256</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00585-997-1246-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">1997</subfield><subfield code="e">10</subfield><subfield code="c">09</subfield><subfield code="h">1246-1256</subfield></datafield></record></collection>
|
score |
7.399888 |