MHD nature of ionospheric wave packets generated by the solar terminator
Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 s...
Ausführliche Beschreibung
Autor*in: |
Afraimovich, E. L. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Geomagnetism and aeronomy - SP MAIK Nauka/Interperiodica, 1961, 50(2010), 1 vom: Feb., Seite 79-95 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2010 ; number:1 ; month:02 ; pages:79-95 |
Links: |
---|
DOI / URN: |
10.1134/S001679321001010X |
---|
Katalog-ID: |
OLC2071819152 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071819152 | ||
003 | DE-627 | ||
005 | 20230401080528.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S001679321001010X |2 doi | |
035 | |a (DE-627)OLC2071819152 | ||
035 | |a (DE-He213)S001679321001010X-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Afraimovich, E. L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a MHD nature of ionospheric wave packets generated by the solar terminator |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2010 | ||
520 | |a Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b]. | ||
650 | 4 | |a Wave Packet | |
650 | 4 | |a Total Electron Content | |
650 | 4 | |a Ionospheric Disturbance | |
650 | 4 | |a Vertical Total Electron Content | |
650 | 4 | |a Total Electron Content Variation | |
700 | 1 | |a Edemsky, I. K. |4 aut | |
700 | 1 | |a Voeykov, S. V. |4 aut | |
700 | 1 | |a Yasukevich, Yu. V. |4 aut | |
700 | 1 | |a Zhivetiev, I. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geomagnetism and aeronomy |d SP MAIK Nauka/Interperiodica, 1961 |g 50(2010), 1 vom: Feb., Seite 79-95 |w (DE-627)129365564 |w (DE-600)161523-3 |w (DE-576)014739321 |x 0016-7932 |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2010 |g number:1 |g month:02 |g pages:79-95 |
856 | 4 | 1 | |u https://doi.org/10.1134/S001679321001010X |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 50 |j 2010 |e 1 |c 02 |h 79-95 |
author_variant |
e l a el ela i k e ik ike s v v sv svv y v y yv yvy i v z iv ivz |
---|---|
matchkey_str |
article:00167932:2010----::hntroinshrcaeaktgnrtdy |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1134/S001679321001010X doi (DE-627)OLC2071819152 (DE-He213)S001679321001010X-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Afraimovich, E. L. verfasserin aut MHD nature of ionospheric wave packets generated by the solar terminator 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b]. Wave Packet Total Electron Content Ionospheric Disturbance Vertical Total Electron Content Total Electron Content Variation Edemsky, I. K. aut Voeykov, S. V. aut Yasukevich, Yu. V. aut Zhivetiev, I. V. aut Enthalten in Geomagnetism and aeronomy SP MAIK Nauka/Interperiodica, 1961 50(2010), 1 vom: Feb., Seite 79-95 (DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 0016-7932 nnns volume:50 year:2010 number:1 month:02 pages:79-95 https://doi.org/10.1134/S001679321001010X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 AR 50 2010 1 02 79-95 |
spelling |
10.1134/S001679321001010X doi (DE-627)OLC2071819152 (DE-He213)S001679321001010X-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Afraimovich, E. L. verfasserin aut MHD nature of ionospheric wave packets generated by the solar terminator 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b]. Wave Packet Total Electron Content Ionospheric Disturbance Vertical Total Electron Content Total Electron Content Variation Edemsky, I. K. aut Voeykov, S. V. aut Yasukevich, Yu. V. aut Zhivetiev, I. V. aut Enthalten in Geomagnetism and aeronomy SP MAIK Nauka/Interperiodica, 1961 50(2010), 1 vom: Feb., Seite 79-95 (DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 0016-7932 nnns volume:50 year:2010 number:1 month:02 pages:79-95 https://doi.org/10.1134/S001679321001010X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 AR 50 2010 1 02 79-95 |
allfields_unstemmed |
10.1134/S001679321001010X doi (DE-627)OLC2071819152 (DE-He213)S001679321001010X-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Afraimovich, E. L. verfasserin aut MHD nature of ionospheric wave packets generated by the solar terminator 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b]. Wave Packet Total Electron Content Ionospheric Disturbance Vertical Total Electron Content Total Electron Content Variation Edemsky, I. K. aut Voeykov, S. V. aut Yasukevich, Yu. V. aut Zhivetiev, I. V. aut Enthalten in Geomagnetism and aeronomy SP MAIK Nauka/Interperiodica, 1961 50(2010), 1 vom: Feb., Seite 79-95 (DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 0016-7932 nnns volume:50 year:2010 number:1 month:02 pages:79-95 https://doi.org/10.1134/S001679321001010X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 AR 50 2010 1 02 79-95 |
allfieldsGer |
10.1134/S001679321001010X doi (DE-627)OLC2071819152 (DE-He213)S001679321001010X-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Afraimovich, E. L. verfasserin aut MHD nature of ionospheric wave packets generated by the solar terminator 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b]. Wave Packet Total Electron Content Ionospheric Disturbance Vertical Total Electron Content Total Electron Content Variation Edemsky, I. K. aut Voeykov, S. V. aut Yasukevich, Yu. V. aut Zhivetiev, I. V. aut Enthalten in Geomagnetism and aeronomy SP MAIK Nauka/Interperiodica, 1961 50(2010), 1 vom: Feb., Seite 79-95 (DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 0016-7932 nnns volume:50 year:2010 number:1 month:02 pages:79-95 https://doi.org/10.1134/S001679321001010X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 AR 50 2010 1 02 79-95 |
allfieldsSound |
10.1134/S001679321001010X doi (DE-627)OLC2071819152 (DE-He213)S001679321001010X-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Afraimovich, E. L. verfasserin aut MHD nature of ionospheric wave packets generated by the solar terminator 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b]. Wave Packet Total Electron Content Ionospheric Disturbance Vertical Total Electron Content Total Electron Content Variation Edemsky, I. K. aut Voeykov, S. V. aut Yasukevich, Yu. V. aut Zhivetiev, I. V. aut Enthalten in Geomagnetism and aeronomy SP MAIK Nauka/Interperiodica, 1961 50(2010), 1 vom: Feb., Seite 79-95 (DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 0016-7932 nnns volume:50 year:2010 number:1 month:02 pages:79-95 https://doi.org/10.1134/S001679321001010X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 AR 50 2010 1 02 79-95 |
language |
English |
source |
Enthalten in Geomagnetism and aeronomy 50(2010), 1 vom: Feb., Seite 79-95 volume:50 year:2010 number:1 month:02 pages:79-95 |
sourceStr |
Enthalten in Geomagnetism and aeronomy 50(2010), 1 vom: Feb., Seite 79-95 volume:50 year:2010 number:1 month:02 pages:79-95 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wave Packet Total Electron Content Ionospheric Disturbance Vertical Total Electron Content Total Electron Content Variation |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geomagnetism and aeronomy |
authorswithroles_txt_mv |
Afraimovich, E. L. @@aut@@ Edemsky, I. K. @@aut@@ Voeykov, S. V. @@aut@@ Yasukevich, Yu. V. @@aut@@ Zhivetiev, I. V. @@aut@@ |
publishDateDaySort_date |
2010-02-01T00:00:00Z |
hierarchy_top_id |
129365564 |
dewey-sort |
3550 |
id |
OLC2071819152 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071819152</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401080528.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S001679321001010X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071819152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S001679321001010X-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Afraimovich, E. L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MHD nature of ionospheric wave packets generated by the solar terminator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b].</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Packet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Electron Content</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric Disturbance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical Total Electron Content</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Electron Content Variation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Edemsky, I. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Voeykov, S. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yasukevich, Yu. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhivetiev, I. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geomagnetism and aeronomy</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1961</subfield><subfield code="g">50(2010), 1 vom: Feb., Seite 79-95</subfield><subfield code="w">(DE-627)129365564</subfield><subfield code="w">(DE-600)161523-3</subfield><subfield code="w">(DE-576)014739321</subfield><subfield code="x">0016-7932</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:79-95</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S001679321001010X</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="c">02</subfield><subfield code="h">79-95</subfield></datafield></record></collection>
|
author |
Afraimovich, E. L. |
spellingShingle |
Afraimovich, E. L. ddc 550 ssgn 16,13 misc Wave Packet misc Total Electron Content misc Ionospheric Disturbance misc Vertical Total Electron Content misc Total Electron Content Variation MHD nature of ionospheric wave packets generated by the solar terminator |
authorStr |
Afraimovich, E. L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129365564 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0016-7932 |
topic_title |
550 VZ 16,13 ssgn MHD nature of ionospheric wave packets generated by the solar terminator Wave Packet Total Electron Content Ionospheric Disturbance Vertical Total Electron Content Total Electron Content Variation |
topic |
ddc 550 ssgn 16,13 misc Wave Packet misc Total Electron Content misc Ionospheric Disturbance misc Vertical Total Electron Content misc Total Electron Content Variation |
topic_unstemmed |
ddc 550 ssgn 16,13 misc Wave Packet misc Total Electron Content misc Ionospheric Disturbance misc Vertical Total Electron Content misc Total Electron Content Variation |
topic_browse |
ddc 550 ssgn 16,13 misc Wave Packet misc Total Electron Content misc Ionospheric Disturbance misc Vertical Total Electron Content misc Total Electron Content Variation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Geomagnetism and aeronomy |
hierarchy_parent_id |
129365564 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geomagnetism and aeronomy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 |
title |
MHD nature of ionospheric wave packets generated by the solar terminator |
ctrlnum |
(DE-627)OLC2071819152 (DE-He213)S001679321001010X-p |
title_full |
MHD nature of ionospheric wave packets generated by the solar terminator |
author_sort |
Afraimovich, E. L. |
journal |
Geomagnetism and aeronomy |
journalStr |
Geomagnetism and aeronomy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
79 |
author_browse |
Afraimovich, E. L. Edemsky, I. K. Voeykov, S. V. Yasukevich, Yu. V. Zhivetiev, I. V. |
container_volume |
50 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Afraimovich, E. L. |
doi_str_mv |
10.1134/S001679321001010X |
dewey-full |
550 |
title_sort |
mhd nature of ionospheric wave packets generated by the solar terminator |
title_auth |
MHD nature of ionospheric wave packets generated by the solar terminator |
abstract |
Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b]. © Pleiades Publishing, Ltd. 2010 |
abstractGer |
Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b]. © Pleiades Publishing, Ltd. 2010 |
abstract_unstemmed |
Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b]. © Pleiades Publishing, Ltd. 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 |
container_issue |
1 |
title_short |
MHD nature of ionospheric wave packets generated by the solar terminator |
url |
https://doi.org/10.1134/S001679321001010X |
remote_bool |
false |
author2 |
Edemsky, I. K. Voeykov, S. V. Yasukevich, Yu. V. Zhivetiev, I. V. |
author2Str |
Edemsky, I. K. Voeykov, S. V. Yasukevich, Yu. V. Zhivetiev, I. V. |
ppnlink |
129365564 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S001679321001010X |
up_date |
2024-07-04T04:18:10.431Z |
_version_ |
1803620649986424832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071819152</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401080528.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S001679321001010X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071819152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S001679321001010X-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Afraimovich, E. L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MHD nature of ionospheric wave packets generated by the solar terminator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b].</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Packet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Electron Content</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric Disturbance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical Total Electron Content</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Electron Content Variation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Edemsky, I. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Voeykov, S. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yasukevich, Yu. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhivetiev, I. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geomagnetism and aeronomy</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1961</subfield><subfield code="g">50(2010), 1 vom: Feb., Seite 79-95</subfield><subfield code="w">(DE-627)129365564</subfield><subfield code="w">(DE-600)161523-3</subfield><subfield code="w">(DE-576)014739321</subfield><subfield code="x">0016-7932</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:79-95</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S001679321001010X</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="c">02</subfield><subfield code="h">79-95</subfield></datafield></record></collection>
|
score |
7.4006615 |