Reflectionless acoustic gravity waves in the Earth’s atmosphere
Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not...
Ausführliche Beschreibung
Autor*in: |
Petrukhin, N. S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Geomagnetism and aeronomy - SP MAIK Nauka/Interperiodica, 1961, 52(2012), 6 vom: Nov., Seite 814-819 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2012 ; number:6 ; month:11 ; pages:814-819 |
Links: |
---|
DOI / URN: |
10.1134/S0016793212060072 |
---|
Katalog-ID: |
OLC2071822102 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2071822102 | ||
003 | DE-627 | ||
005 | 20230401080622.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0016793212060072 |2 doi | |
035 | |a (DE-627)OLC2071822102 | ||
035 | |a (DE-He213)S0016793212060072-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Petrukhin, N. S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reflectionless acoustic gravity waves in the Earth’s atmosphere |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2012 | ||
520 | |a Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth’s atmosphere using piecewise reflectionless profiles. The Earth’s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth’s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations. | ||
650 | 4 | |a Internal Wave | |
650 | 4 | |a Sound Speed | |
650 | 4 | |a Acoustic Gravity Wave | |
650 | 4 | |a Sound Speed Profile | |
650 | 4 | |a Wave Energy Flux | |
700 | 1 | |a Pelinovsky, E. N. |4 aut | |
700 | 1 | |a Batsyna, E. K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geomagnetism and aeronomy |d SP MAIK Nauka/Interperiodica, 1961 |g 52(2012), 6 vom: Nov., Seite 814-819 |w (DE-627)129365564 |w (DE-600)161523-3 |w (DE-576)014739321 |x 0016-7932 |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2012 |g number:6 |g month:11 |g pages:814-819 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0016793212060072 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 52 |j 2012 |e 6 |c 11 |h 814-819 |
author_variant |
n s p ns nsp e n p en enp e k b ek ekb |
---|---|
matchkey_str |
article:00167932:2012----::elcinescutcrvtwvsnh |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1134/S0016793212060072 doi (DE-627)OLC2071822102 (DE-He213)S0016793212060072-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Petrukhin, N. S. verfasserin aut Reflectionless acoustic gravity waves in the Earth’s atmosphere 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2012 Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth’s atmosphere using piecewise reflectionless profiles. The Earth’s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth’s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations. Internal Wave Sound Speed Acoustic Gravity Wave Sound Speed Profile Wave Energy Flux Pelinovsky, E. N. aut Batsyna, E. K. aut Enthalten in Geomagnetism and aeronomy SP MAIK Nauka/Interperiodica, 1961 52(2012), 6 vom: Nov., Seite 814-819 (DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 0016-7932 nnns volume:52 year:2012 number:6 month:11 pages:814-819 https://doi.org/10.1134/S0016793212060072 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 AR 52 2012 6 11 814-819 |
spelling |
10.1134/S0016793212060072 doi (DE-627)OLC2071822102 (DE-He213)S0016793212060072-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Petrukhin, N. S. verfasserin aut Reflectionless acoustic gravity waves in the Earth’s atmosphere 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2012 Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth’s atmosphere using piecewise reflectionless profiles. The Earth’s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth’s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations. Internal Wave Sound Speed Acoustic Gravity Wave Sound Speed Profile Wave Energy Flux Pelinovsky, E. N. aut Batsyna, E. K. aut Enthalten in Geomagnetism and aeronomy SP MAIK Nauka/Interperiodica, 1961 52(2012), 6 vom: Nov., Seite 814-819 (DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 0016-7932 nnns volume:52 year:2012 number:6 month:11 pages:814-819 https://doi.org/10.1134/S0016793212060072 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 AR 52 2012 6 11 814-819 |
allfields_unstemmed |
10.1134/S0016793212060072 doi (DE-627)OLC2071822102 (DE-He213)S0016793212060072-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Petrukhin, N. S. verfasserin aut Reflectionless acoustic gravity waves in the Earth’s atmosphere 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2012 Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth’s atmosphere using piecewise reflectionless profiles. The Earth’s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth’s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations. Internal Wave Sound Speed Acoustic Gravity Wave Sound Speed Profile Wave Energy Flux Pelinovsky, E. N. aut Batsyna, E. K. aut Enthalten in Geomagnetism and aeronomy SP MAIK Nauka/Interperiodica, 1961 52(2012), 6 vom: Nov., Seite 814-819 (DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 0016-7932 nnns volume:52 year:2012 number:6 month:11 pages:814-819 https://doi.org/10.1134/S0016793212060072 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 AR 52 2012 6 11 814-819 |
allfieldsGer |
10.1134/S0016793212060072 doi (DE-627)OLC2071822102 (DE-He213)S0016793212060072-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Petrukhin, N. S. verfasserin aut Reflectionless acoustic gravity waves in the Earth’s atmosphere 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2012 Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth’s atmosphere using piecewise reflectionless profiles. The Earth’s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth’s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations. Internal Wave Sound Speed Acoustic Gravity Wave Sound Speed Profile Wave Energy Flux Pelinovsky, E. N. aut Batsyna, E. K. aut Enthalten in Geomagnetism and aeronomy SP MAIK Nauka/Interperiodica, 1961 52(2012), 6 vom: Nov., Seite 814-819 (DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 0016-7932 nnns volume:52 year:2012 number:6 month:11 pages:814-819 https://doi.org/10.1134/S0016793212060072 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 AR 52 2012 6 11 814-819 |
allfieldsSound |
10.1134/S0016793212060072 doi (DE-627)OLC2071822102 (DE-He213)S0016793212060072-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Petrukhin, N. S. verfasserin aut Reflectionless acoustic gravity waves in the Earth’s atmosphere 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2012 Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth’s atmosphere using piecewise reflectionless profiles. The Earth’s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth’s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations. Internal Wave Sound Speed Acoustic Gravity Wave Sound Speed Profile Wave Energy Flux Pelinovsky, E. N. aut Batsyna, E. K. aut Enthalten in Geomagnetism and aeronomy SP MAIK Nauka/Interperiodica, 1961 52(2012), 6 vom: Nov., Seite 814-819 (DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 0016-7932 nnns volume:52 year:2012 number:6 month:11 pages:814-819 https://doi.org/10.1134/S0016793212060072 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 AR 52 2012 6 11 814-819 |
language |
English |
source |
Enthalten in Geomagnetism and aeronomy 52(2012), 6 vom: Nov., Seite 814-819 volume:52 year:2012 number:6 month:11 pages:814-819 |
sourceStr |
Enthalten in Geomagnetism and aeronomy 52(2012), 6 vom: Nov., Seite 814-819 volume:52 year:2012 number:6 month:11 pages:814-819 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Internal Wave Sound Speed Acoustic Gravity Wave Sound Speed Profile Wave Energy Flux |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geomagnetism and aeronomy |
authorswithroles_txt_mv |
Petrukhin, N. S. @@aut@@ Pelinovsky, E. N. @@aut@@ Batsyna, E. K. @@aut@@ |
publishDateDaySort_date |
2012-11-01T00:00:00Z |
hierarchy_top_id |
129365564 |
dewey-sort |
3550 |
id |
OLC2071822102 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071822102</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401080622.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0016793212060072</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071822102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0016793212060072-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petrukhin, N. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reflectionless acoustic gravity waves in the Earth’s atmosphere</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth’s atmosphere using piecewise reflectionless profiles. The Earth’s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth’s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internal Wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sound Speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustic Gravity Wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sound Speed Profile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Energy Flux</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pelinovsky, E. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Batsyna, E. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geomagnetism and aeronomy</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1961</subfield><subfield code="g">52(2012), 6 vom: Nov., Seite 814-819</subfield><subfield code="w">(DE-627)129365564</subfield><subfield code="w">(DE-600)161523-3</subfield><subfield code="w">(DE-576)014739321</subfield><subfield code="x">0016-7932</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:814-819</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0016793212060072</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2012</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">814-819</subfield></datafield></record></collection>
|
author |
Petrukhin, N. S. |
spellingShingle |
Petrukhin, N. S. ddc 550 ssgn 16,13 misc Internal Wave misc Sound Speed misc Acoustic Gravity Wave misc Sound Speed Profile misc Wave Energy Flux Reflectionless acoustic gravity waves in the Earth’s atmosphere |
authorStr |
Petrukhin, N. S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129365564 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0016-7932 |
topic_title |
550 VZ 16,13 ssgn Reflectionless acoustic gravity waves in the Earth’s atmosphere Internal Wave Sound Speed Acoustic Gravity Wave Sound Speed Profile Wave Energy Flux |
topic |
ddc 550 ssgn 16,13 misc Internal Wave misc Sound Speed misc Acoustic Gravity Wave misc Sound Speed Profile misc Wave Energy Flux |
topic_unstemmed |
ddc 550 ssgn 16,13 misc Internal Wave misc Sound Speed misc Acoustic Gravity Wave misc Sound Speed Profile misc Wave Energy Flux |
topic_browse |
ddc 550 ssgn 16,13 misc Internal Wave misc Sound Speed misc Acoustic Gravity Wave misc Sound Speed Profile misc Wave Energy Flux |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Geomagnetism and aeronomy |
hierarchy_parent_id |
129365564 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geomagnetism and aeronomy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129365564 (DE-600)161523-3 (DE-576)014739321 |
title |
Reflectionless acoustic gravity waves in the Earth’s atmosphere |
ctrlnum |
(DE-627)OLC2071822102 (DE-He213)S0016793212060072-p |
title_full |
Reflectionless acoustic gravity waves in the Earth’s atmosphere |
author_sort |
Petrukhin, N. S. |
journal |
Geomagnetism and aeronomy |
journalStr |
Geomagnetism and aeronomy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
814 |
author_browse |
Petrukhin, N. S. Pelinovsky, E. N. Batsyna, E. K. |
container_volume |
52 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Petrukhin, N. S. |
doi_str_mv |
10.1134/S0016793212060072 |
dewey-full |
550 |
title_sort |
reflectionless acoustic gravity waves in the earth’s atmosphere |
title_auth |
Reflectionless acoustic gravity waves in the Earth’s atmosphere |
abstract |
Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth’s atmosphere using piecewise reflectionless profiles. The Earth’s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth’s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations. © Pleiades Publishing, Ltd. 2012 |
abstractGer |
Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth’s atmosphere using piecewise reflectionless profiles. The Earth’s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth’s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations. © Pleiades Publishing, Ltd. 2012 |
abstract_unstemmed |
Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth’s atmosphere using piecewise reflectionless profiles. The Earth’s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth’s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations. © Pleiades Publishing, Ltd. 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_40 GBV_ILN_70 |
container_issue |
6 |
title_short |
Reflectionless acoustic gravity waves in the Earth’s atmosphere |
url |
https://doi.org/10.1134/S0016793212060072 |
remote_bool |
false |
author2 |
Pelinovsky, E. N. Batsyna, E. K. |
author2Str |
Pelinovsky, E. N. Batsyna, E. K. |
ppnlink |
129365564 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0016793212060072 |
up_date |
2024-07-04T04:18:33.923Z |
_version_ |
1803620674618523648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2071822102</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401080622.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0016793212060072</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2071822102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0016793212060072-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petrukhin, N. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reflectionless acoustic gravity waves in the Earth’s atmosphere</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth’s atmosphere using piecewise reflectionless profiles. The Earth’s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth’s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internal Wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sound Speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustic Gravity Wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sound Speed Profile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Energy Flux</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pelinovsky, E. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Batsyna, E. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geomagnetism and aeronomy</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1961</subfield><subfield code="g">52(2012), 6 vom: Nov., Seite 814-819</subfield><subfield code="w">(DE-627)129365564</subfield><subfield code="w">(DE-600)161523-3</subfield><subfield code="w">(DE-576)014739321</subfield><subfield code="x">0016-7932</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:814-819</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0016793212060072</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2012</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">814-819</subfield></datafield></record></collection>
|
score |
7.399102 |