Detonation burning of anthracite and lignite particles in a flow-type radial combustor
Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the c...
Ausführliche Beschreibung
Autor*in: |
Bykovskii, F. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Combustion, explosion and shock waves - Pleiades Publishing, 1966, 52(2016), 6 vom: Nov., Seite 703-712 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2016 ; number:6 ; month:11 ; pages:703-712 |
Links: |
---|
DOI / URN: |
10.1134/S0010508216060101 |
---|
Katalog-ID: |
OLC2072187710 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2072187710 | ||
003 | DE-627 | ||
005 | 20230503022750.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0010508216060101 |2 doi | |
035 | |a (DE-627)OLC2072187710 | ||
035 | |a (DE-He213)S0010508216060101-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Bykovskii, F. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Detonation burning of anthracite and lignite particles in a flow-type radial combustor |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2016 | ||
520 | |a Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/$ H_{2} $ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/$ H_{2} $ = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures. | ||
650 | 4 | |a continuous spin detonation | |
650 | 4 | |a plane–radial vortex chamber | |
650 | 4 | |a bituminous coal | |
650 | 4 | |a flow structure | |
700 | 1 | |a Zhdan, S. A. |4 aut | |
700 | 1 | |a Vedernikov, E. F. |4 aut | |
700 | 1 | |a Zholobov, Yu. A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Combustion, explosion and shock waves |d Pleiades Publishing, 1966 |g 52(2016), 6 vom: Nov., Seite 703-712 |w (DE-627)12959282X |w (DE-600)240334-1 |w (DE-576)015085570 |x 0010-5082 |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2016 |g number:6 |g month:11 |g pages:703-712 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0010508216060101 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 52 |j 2016 |e 6 |c 11 |h 703-712 |
author_variant |
f a b fa fab s a z sa saz e f v ef efv y a z ya yaz |
---|---|
matchkey_str |
article:00105082:2016----::eoainunnoatrctadintprilsnfo |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1134/S0010508216060101 doi (DE-627)OLC2072187710 (DE-He213)S0010508216060101-p DE-627 ger DE-627 rakwb eng 660 VZ Bykovskii, F. A. verfasserin aut Detonation burning of anthracite and lignite particles in a flow-type radial combustor 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/$ H_{2} $ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/$ H_{2} $ = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures. continuous spin detonation plane–radial vortex chamber bituminous coal flow structure Zhdan, S. A. aut Vedernikov, E. F. aut Zholobov, Yu. A. aut Enthalten in Combustion, explosion and shock waves Pleiades Publishing, 1966 52(2016), 6 vom: Nov., Seite 703-712 (DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 0010-5082 nnns volume:52 year:2016 number:6 month:11 pages:703-712 https://doi.org/10.1134/S0010508216060101 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 AR 52 2016 6 11 703-712 |
spelling |
10.1134/S0010508216060101 doi (DE-627)OLC2072187710 (DE-He213)S0010508216060101-p DE-627 ger DE-627 rakwb eng 660 VZ Bykovskii, F. A. verfasserin aut Detonation burning of anthracite and lignite particles in a flow-type radial combustor 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/$ H_{2} $ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/$ H_{2} $ = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures. continuous spin detonation plane–radial vortex chamber bituminous coal flow structure Zhdan, S. A. aut Vedernikov, E. F. aut Zholobov, Yu. A. aut Enthalten in Combustion, explosion and shock waves Pleiades Publishing, 1966 52(2016), 6 vom: Nov., Seite 703-712 (DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 0010-5082 nnns volume:52 year:2016 number:6 month:11 pages:703-712 https://doi.org/10.1134/S0010508216060101 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 AR 52 2016 6 11 703-712 |
allfields_unstemmed |
10.1134/S0010508216060101 doi (DE-627)OLC2072187710 (DE-He213)S0010508216060101-p DE-627 ger DE-627 rakwb eng 660 VZ Bykovskii, F. A. verfasserin aut Detonation burning of anthracite and lignite particles in a flow-type radial combustor 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/$ H_{2} $ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/$ H_{2} $ = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures. continuous spin detonation plane–radial vortex chamber bituminous coal flow structure Zhdan, S. A. aut Vedernikov, E. F. aut Zholobov, Yu. A. aut Enthalten in Combustion, explosion and shock waves Pleiades Publishing, 1966 52(2016), 6 vom: Nov., Seite 703-712 (DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 0010-5082 nnns volume:52 year:2016 number:6 month:11 pages:703-712 https://doi.org/10.1134/S0010508216060101 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 AR 52 2016 6 11 703-712 |
allfieldsGer |
10.1134/S0010508216060101 doi (DE-627)OLC2072187710 (DE-He213)S0010508216060101-p DE-627 ger DE-627 rakwb eng 660 VZ Bykovskii, F. A. verfasserin aut Detonation burning of anthracite and lignite particles in a flow-type radial combustor 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/$ H_{2} $ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/$ H_{2} $ = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures. continuous spin detonation plane–radial vortex chamber bituminous coal flow structure Zhdan, S. A. aut Vedernikov, E. F. aut Zholobov, Yu. A. aut Enthalten in Combustion, explosion and shock waves Pleiades Publishing, 1966 52(2016), 6 vom: Nov., Seite 703-712 (DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 0010-5082 nnns volume:52 year:2016 number:6 month:11 pages:703-712 https://doi.org/10.1134/S0010508216060101 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 AR 52 2016 6 11 703-712 |
allfieldsSound |
10.1134/S0010508216060101 doi (DE-627)OLC2072187710 (DE-He213)S0010508216060101-p DE-627 ger DE-627 rakwb eng 660 VZ Bykovskii, F. A. verfasserin aut Detonation burning of anthracite and lignite particles in a flow-type radial combustor 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/$ H_{2} $ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/$ H_{2} $ = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures. continuous spin detonation plane–radial vortex chamber bituminous coal flow structure Zhdan, S. A. aut Vedernikov, E. F. aut Zholobov, Yu. A. aut Enthalten in Combustion, explosion and shock waves Pleiades Publishing, 1966 52(2016), 6 vom: Nov., Seite 703-712 (DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 0010-5082 nnns volume:52 year:2016 number:6 month:11 pages:703-712 https://doi.org/10.1134/S0010508216060101 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 AR 52 2016 6 11 703-712 |
language |
English |
source |
Enthalten in Combustion, explosion and shock waves 52(2016), 6 vom: Nov., Seite 703-712 volume:52 year:2016 number:6 month:11 pages:703-712 |
sourceStr |
Enthalten in Combustion, explosion and shock waves 52(2016), 6 vom: Nov., Seite 703-712 volume:52 year:2016 number:6 month:11 pages:703-712 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
continuous spin detonation plane–radial vortex chamber bituminous coal flow structure |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Combustion, explosion and shock waves |
authorswithroles_txt_mv |
Bykovskii, F. A. @@aut@@ Zhdan, S. A. @@aut@@ Vedernikov, E. F. @@aut@@ Zholobov, Yu. A. @@aut@@ |
publishDateDaySort_date |
2016-11-01T00:00:00Z |
hierarchy_top_id |
12959282X |
dewey-sort |
3660 |
id |
OLC2072187710 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072187710</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503022750.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0010508216060101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072187710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0010508216060101-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bykovskii, F. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detonation burning of anthracite and lignite particles in a flow-type radial combustor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/$ H_{2} $ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/$ H_{2} $ = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous spin detonation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plane–radial vortex chamber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bituminous coal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow structure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhdan, S. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vedernikov, E. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zholobov, Yu. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Combustion, explosion and shock waves</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">52(2016), 6 vom: Nov., Seite 703-712</subfield><subfield code="w">(DE-627)12959282X</subfield><subfield code="w">(DE-600)240334-1</subfield><subfield code="w">(DE-576)015085570</subfield><subfield code="x">0010-5082</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:703-712</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0010508216060101</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">703-712</subfield></datafield></record></collection>
|
author |
Bykovskii, F. A. |
spellingShingle |
Bykovskii, F. A. ddc 660 misc continuous spin detonation misc plane–radial vortex chamber misc bituminous coal misc flow structure Detonation burning of anthracite and lignite particles in a flow-type radial combustor |
authorStr |
Bykovskii, F. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12959282X |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-5082 |
topic_title |
660 VZ Detonation burning of anthracite and lignite particles in a flow-type radial combustor continuous spin detonation plane–radial vortex chamber bituminous coal flow structure |
topic |
ddc 660 misc continuous spin detonation misc plane–radial vortex chamber misc bituminous coal misc flow structure |
topic_unstemmed |
ddc 660 misc continuous spin detonation misc plane–radial vortex chamber misc bituminous coal misc flow structure |
topic_browse |
ddc 660 misc continuous spin detonation misc plane–radial vortex chamber misc bituminous coal misc flow structure |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Combustion, explosion and shock waves |
hierarchy_parent_id |
12959282X |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Combustion, explosion and shock waves |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 |
title |
Detonation burning of anthracite and lignite particles in a flow-type radial combustor |
ctrlnum |
(DE-627)OLC2072187710 (DE-He213)S0010508216060101-p |
title_full |
Detonation burning of anthracite and lignite particles in a flow-type radial combustor |
author_sort |
Bykovskii, F. A. |
journal |
Combustion, explosion and shock waves |
journalStr |
Combustion, explosion and shock waves |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
703 |
author_browse |
Bykovskii, F. A. Zhdan, S. A. Vedernikov, E. F. Zholobov, Yu. A. |
container_volume |
52 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Bykovskii, F. A. |
doi_str_mv |
10.1134/S0010508216060101 |
dewey-full |
660 |
title_sort |
detonation burning of anthracite and lignite particles in a flow-type radial combustor |
title_auth |
Detonation burning of anthracite and lignite particles in a flow-type radial combustor |
abstract |
Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/$ H_{2} $ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/$ H_{2} $ = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures. © Pleiades Publishing, Ltd. 2016 |
abstractGer |
Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/$ H_{2} $ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/$ H_{2} $ = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures. © Pleiades Publishing, Ltd. 2016 |
abstract_unstemmed |
Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/$ H_{2} $ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/$ H_{2} $ = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures. © Pleiades Publishing, Ltd. 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_70 |
container_issue |
6 |
title_short |
Detonation burning of anthracite and lignite particles in a flow-type radial combustor |
url |
https://doi.org/10.1134/S0010508216060101 |
remote_bool |
false |
author2 |
Zhdan, S. A. Vedernikov, E. F. Zholobov, Yu. A. |
author2Str |
Zhdan, S. A. Vedernikov, E. F. Zholobov, Yu. A. |
ppnlink |
12959282X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0010508216060101 |
up_date |
2024-07-03T13:57:31.242Z |
_version_ |
1803566502420414465 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072187710</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503022750.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0010508216060101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072187710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0010508216060101-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bykovskii, F. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detonation burning of anthracite and lignite particles in a flow-type radial combustor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/$ H_{2} $ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/$ H_{2} $ = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous spin detonation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plane–radial vortex chamber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bituminous coal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow structure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhdan, S. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vedernikov, E. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zholobov, Yu. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Combustion, explosion and shock waves</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">52(2016), 6 vom: Nov., Seite 703-712</subfield><subfield code="w">(DE-627)12959282X</subfield><subfield code="w">(DE-600)240334-1</subfield><subfield code="w">(DE-576)015085570</subfield><subfield code="x">0010-5082</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:703-712</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0010508216060101</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">703-712</subfield></datafield></record></collection>
|
score |
7.40189 |